Topology Qual, Algebraic Topology: Summer 2012

(1) Let Σ_g denote the closed, orientable, surface of genus g. Prove that if Σ_g is a covering space of Σ_h , then there is a $d \in \mathbb{Z}^+$ satisfying

$$g = d(h-1) + 1.$$

- (2) Let X be a closed (i.e., compact & boundaryless), orientable 2k-dimensional manifold. Prove that if $H_{k-1}(X;\mathbb{Z})$ is torsion-free, then so is $H_k(X;\mathbb{Z})$.
- (3) Let $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ be the 2-torus, concretely identified as the quotient space of the Euclidean plane by the standard integer lattice. Then any 2×2 integer matrix A induces a map

$$\phi: (\mathbb{R}/\mathbb{Z})^2 \to (\mathbb{R}/\mathbb{Z})^2$$

by left (matrix) multiplication.

(a) Show that (with respect to a suitable basis) the induced contravariant map

$$\phi^* : H^1(T^2; \mathbb{Z}) \leftarrow H^1(T^2; \mathbb{Z})$$

on the cellular cohomology is left multiplication by the transpose of A.

(b) Since T^2 is a closed, \mathbb{Z} -oriented manifold, it has a fundamental class, $[T^2] \in H_2(T^2; \mathbb{Z})$. Prove that

$$\phi_*[T^2] = \det(A) \cdot [T^2].$$

(Hint: Use part (a) and the naturality of the cup product under induced maps on homology/cohomology.)

(4) The closed, orientable surface Σ_g of genus g, embedded in \mathbb{R}^3 in the standard way, bounds a compact region R (often called a *genus g solid handlebody*).

Two copies of R, glued together by the identity map between their boundary surfaces, form a closed 3-manifold X. Compute $H_*(X; \mathbb{Z})$.

GT Qual 2012 (Spring) Part II Show All Relevant Work!

1) Consider stereographic projection of the unit circle S^1 in \mathbb{R}^2 to \mathbb{R} from the North Pole (σ) and from the South Pole $(\tilde{\sigma})$.

a) Show that $\tilde{\sigma} \circ \sigma^{-1}(x) = 1/x$

b) Consider the smooth vector field $\frac{d}{dx}$ on **R**. Using σ , this induces a smooth vector field on the circle minus the North Pole. Can it be extended to a smooth vector field on all of S^1 ?

2a) A smooth map $F: M \to N$ is a submersion if...

b) Let M be a compact, smooth 3-manifold. Prove that there is no submersion $F: M \to \mathbf{R}^3$.

3) Consider D the open unit disk in \mathbf{R}^2 with Riemannian metric

$$g = (\frac{2}{1+x^2+y^2})^2 dx \otimes dx + (\frac{2}{1+x^2+y^2})^2 dy \otimes dy$$

a) Write down an (oriented) orthonormal frame (E_1, E_2) for D with respect to this metric.

b) Write down the associated dual coframe (ϵ^1, ϵ^2) .

c) Compute $\epsilon^1 \wedge \epsilon^2$. Is this the Riemannian volume form (that is, does it agree with the volume formula $\sqrt{\det(g_{ij})}dx \wedge dy$)?

d) Compute the volume (area?) of D with respect to this metric.

e) What have you computed?

4) Suppose that f_0 and f_1 are smoothly homotopic maps from X to Y and that X is a compact k-dimensional manifold without boundary.

a) Complete the sentence " f_0 and f_1 are smoothly homotopic maps from X to Y means that there exists a function F from ..."

b) Prove that if ω is a closed k-form on Y then $\int_X f_0^*(\omega) = \int_X f_1^*(\omega)$.