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RECURSIVE AMBIGUITY AND MACHINA’S EXAMPLES∗
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Machina (American Economic Review 99 (2009), 385–392; American Economic Review 104 (2014), 3814–40) lists
a number of situations where Choquet expected utility, as well as other known models of ambiguity aversion, cannot
capture plausible features of ambiguity attitudes. Most of these problems arise in choice over prospects involving three
or more outcomes. We show that the recursive nonexpected utility model of Segal (International Economic Review 28
(1987), 175–202) is rich enough to accommodate all these situations and, moreover, that this can be done using the
same functional form for all situations.

1. INTRODUCTION

Ambiguity aversion is one of the most investigated phenomenon in decision theory.
Ambiguity refers to situations where a decision maker does not know the exact probabili-
ties of some events. The claim that decision makers systematically prefer betting on events with
known instead of with unknown probabilities, a phenomenon known as ambiguity aversion,
was first suggested in a series of examples by Ellsberg (1961) and was soon proved to hold
true in many experiments. The importance of Ellsberg’s findings stems from the fact that they
cannot be reconciled with individuals holding any subjective probabilities over events. Mainly
motivated by Ellsberg’s examples, several formal models have been proposed to accommodate
ambiguity aversion. One of the most important models in the literature, known as Choquet ex-
pected utility (Schmeidler, 1989), assumes that decision makers hold nonadditive beliefs (called
capacities), which overweight events associated with bad outcomes.

Ellsberg’s experiments involve binary bets (that is, the ambiguous prospects have only two
possible outcomes). Machina (2009) claims that there are some aspects of ambiguity aversion
that arise only in the presence of nonbinary bets. For example, if there are three possible mon-
etary outcomes a > b > c, then a decision maker may prefer ambiguity about the probabilities
of receiving a and b to ambiguity about the probabilities of receiving b and c. Accordingly,
Machina (2009) suggests some examples that involve three or more outcomes and shows that
plausible attitudes toward ambiguity in these problems cannot be accommodated by Choquet
expected utility. Baillon et al. (2011) show that Machina’s examples pose difficulties not only for
Choquet expected utility but for several other known models as well.2,3 In a follow-up paper,
Machina (2014) offers more thought experiments of nonbinary bets and explains why they pose
new difficulties for Choquet expected utility as well as to some other models.

Machina’s examples are in line with a well-established tradition of “puzzles” in decision
theory: A theory implies a specific relationship between two choice problems, even though
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2 Maxmin expected utility (Gilboa and Schmeidler, 1989), variational preferences (Maccheroni et al., 2006), α-maxmin
(Ghirardato et al., 2004), and the smooth model of ambiguity aversion (Klibanoff et al., 2005).

3 Baillon et al. (2011) give an example of general preferences that are consistent with the two examples of Machina
(2009). As they point out, this example is not particularly intuitive. Similarly to the functional we use in this article,
their example does not feature expected utility on a purely objective domain (lotteries). Baillon et al. also mention that
some version of Siniscalchi’s (2009) vector-expected utility is able to account for the same two examples.
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FIGURE 1

RECURSIVE EVALUATION OF A TWO-STAGE LOTTERY

thought or actual experiments systematically violate this relationship. Such are, for instance,
the aforementioned Ellsberg’s examples that challenge the subjective expected utility model
of Savage (1954) and, in the context of decision making under risk, Allais (1953) paradox. In
a similar way, Machina’s examples challenge the links between different decision situations
implied by Choquet expected utility.

In this article, we show that all of Machina’s examples can be handled by the two-stage
recursive ambiguity model of Segal (1987) and, moreover, that this can be done using the same
functional form for all examples. According to the recursive model, ambiguity corresponds
to the case where there is some set of states of the world and the decision maker does not
know the exact probability distribution over these states. Instead, he has in mind a set of
conceivable distributions and, furthermore, he is able to assign (subjective) probabilities to the
different distributions in this set. For each distribution, the decision maker computes its certainty
equivalent using some nonexpected utility functional. He then views the uncertain prospect as
a lottery over these certainty equivalents and evaluates it using the same nonexpected utility
functional. We provide some simple examples demonstrating that the recursive model is rich
enough not to impose the links between different decision situations that exist in Choquet
expected utility. While without further restrictions the recursive model is very general, we show
that a single functional form can address all the aspects described in Machina’s examples.

The reminder of the article is organized as follows: Section 2 reviews the recursive non-
expected utility model. Section 3 describes Machina’s examples and shows how they can be
accommodated by the recursive model.

2. RECURSIVE NONEXPECTED UTILITY

In this section, we outline the recursive nonexpected utility model of Segal (1987) and the
special case of it we invoke in our analysis. Let [w, b] be an interval of monetary prizes, and
let S = {s1, . . . , sn} be a finite state space. Consider an act x = (x1, s1; . . . ; xn, sn), which pays the
amount xi if state si happens. The decision maker does not know the probabilities of the states
s1, . . . , sn, but he has in mind a set of possible probability measures over them. For simplicity,
assume that there are m such possible measures, Pj = (p j

1, . . . , p j
n), j = 1, . . . , m (here p j

i is
the probability that state si occurs under the measure Pj ). The decision maker holds subjective
beliefs about the likelihood of each measure in the set. In particular, he believes that with
probability qj the true measure is Pj . He therefore views the ambiguous prospect as a two-
stage lottery (X1, q1; . . . ; Xm, qm), where with probability qj he will play the single-stage lottery
Xj = (x1, p j

1; . . . ; xn, p j
n), j = 1, . . . , m. This two-stage lottery is depicted on the left-hand side

of Figure 1.
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The decision maker is using a nonexpected utility functional V to evaluate single-stage
lotteries. Denote by cj the certainty equivalent of lottery Xj , that is, the number that satisfies

V (cj , 1) = V
(

x1, p j
1; . . . ; xn, p j

n

)
.

The decision maker evaluates acts using the following two-step approach: He first replaces each
of the m second-stage lotteries X1, . . . , Xm with its certainty equivalent calculated using the
functional V , thus obtaining the simple lottery (c1, q1; . . . ; cm, qm), as seen on the right-hand
side of Figure 1. He then computes the V value of this lottery, V (c1, q1; . . . ; cm, qm), which is
his subjective value of the ambiguous act x.

The decision maker may instead reduce the two-stage lottery into a simple lottery by com-
puting the overall probabilities of the states, that is, he may identify the act x with the lottery
that pays xi with probability

∑m
j=1 qj p j

i . This is known as the reduction of compound lotteries
axiom, and together with the above recursive procedure is known to imply, and be implied
by, expected utility theory (see Samuelson, 1952, and Segal, 1990). The procedure we use must
therefore violate the reduction axiom and expected utility theory. For further analysis, see Segal
(1987, 1990).4 This has two important consequences. First, experimental evidence throughout
the years emphasizes the descriptive limitations of expected utility. Our model is consistent with
more general behavioral patterns under risk (e.g., the Allais paradox). Second, Machina (2009)
shows that many of his examples are driven by some event-separability properties of Choquet
expected utility. For instance, if two acts pay the same on some event E and if the payoff on E
affects the value of each act independently of its payoffs on other events, then the comparison
of these two acts should not depend on the exact magnitude of the payoff on E, as long as it is
the same in both. But changes of the payoffs on E may change the ambiguity properties of the
two acts (e.g., transform any of the acts from being fully objective to subjective, or vice versa),
causing an ambiguity averse decision maker to alter their ranking. Consequentially, Machina
(2009) argues that “nonseparable models of preferences might be better at capturing features
of behavior that lead to these paradoxes.” On the other hand, the recursive model with nonex-
pected utility implies a lot of nonseparability between the outcomes. The evaluation of each of
the lotteries X1, . . . , Xm without expected utility implies interdependency between outcomes,
and even if partial separability exists, it typically disappears when the lottery over the certainty
equivalents c1, . . . , cm is evaluated.

Identifying ambiguity with a compound lottery that the decision maker fails to reduce does not
depend on the specific functional V used in the evaluation procedure described above. But since
we would like to show that all Machina’s examples can be accommodated by the same functional
form, in this article we confine our attention to a specific nonexpected utility functional, namely,
Gul’s (1991) model of disappointment aversion. The disappointment aversion value of the
single-stage lottery X = (x1, p1; . . . ; xn, pn) is the unique v that solves

v =
∑

{xi:u(xi)�v} piu(xi) + (1 + β)
∑

{xi:u(xi)<v} piu(xi)

1 + β
∑

{xi:u(xi)<v} pi
,(1)

where β ∈ (−1,∞) and u : [w, b] → � is increasing. In the disappointment aversion model,
the support of any nondegenerate lottery is divided into two groups, the elating outcomes
(which are preferred to the lottery) and the disappointing outcomes (which are worse than the
lottery). The decision maker evaluates lotteries by taking their “expected utility,” except that
disappointing outcomes get a uniformly greater (or smaller) weight that depends on the value
of a single parameter β, the coefficient of disappointment aversion. Throughout the article, we
further assume linear utility over outcomes, u(x) = x, and β = 0.2.

4 Halevy (2007) provides evidence in favor of the recursive, nonexpected utility model. Approximately 40% of his
subjects were classified as having preferences that are consistent with that model.
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TABLE 1
THE 50:51 EXAMPLE

50 Balls 51 Balls

Act E1 E2 E3 E4

f 1 8,000 8,000 4,000 4,000
f 2 8,000 4,000 8,000 4,000
f 3 12,000 8,000 4,000 0
f 4 12,000 4,000 8,000 0

Under the interpretation that ambiguity aversion amounts to preferring the objective (unam-
biguous) simple lottery to the (ambiguous) compound one, Artstein-Avidan and Dillenberger
(2011) show that a disappointment averse decision maker with β > 0 displays ambiguity aver-
sion for any possible beliefs he might hold about the probability distribution over the states.5

Therefore, this functional is consistent with Ellsberg’s examples. And as we show in this article,
it is also consistent with all of Machina’s examples.

3. ADDRESSING MACHINA’S EXAMPLES

The first two examples are taken from Machina (2009). The other examples are taken from
Machina (2014). For each example, we state the decision maker’s beliefs (and the two-stage
lotteries they induce). All rankings are based on applying the recursive model using the disap-
pointment aversion functional V with u (x) = x and β = 0.2.

3.1. The 50:51 Example. An urn contains 101 balls, each carries one of the numbers 1, . . . , 4.
Of these, 50 are marked either 1 or 2 and 51 are marked either 3 or 4. Let Ei denote the event
“a ball marked i is drawn” and consider the four acts shown in Table 1.

Machina shows that Choquet expected utility implies that f 1 � f 2 if and only if f 3 � f 4.
Nevertheless, Machina (2009, section II) invokes an Ellsberg-like argument that f 4 could be
preferred to f 3 even though f 1 were preferred to f 2, which accordingly violates Choquet expected
utility theory.

We now analyze the four acts f 1, . . . , f 4 using the recursive model. Suppose that the decision
maker believes that 25 balls are marked 1 and 25 balls are marked 2. With respect to the
composition of the other 51 balls, he believes that it is equally likely that either all of them
are marked 3 or all of them are marked 4.6 The acts f 1, . . . , f 4 induce the following two-stage
lotteries (to simplify notation, we divide all outcomes by 1,000):

f 1 →
(

8,
50
101

; 4,
51

101

)

f 2 →
((

8,
76
101

; 4,
25

101

)
,

1
2

;
(

8,
25
101

; 4,
76

101

)
,

1
2

)

f 3 →
((

12,
25

101
; 8,

25
101

; 4,
51
101

)
,

1
2

;
(

12,
25

101
; 8,

25
101

; 0,
51
101

)
,

1
2

)

f 4 →
((

12,
25

101
; 8,

51
101

; 4,
25
101

)
,

1
2

;
(

12,
25

101
; 4,

25
101

; 0,
51
101

)
,

1
2

)

5 This assertion is not specific to Gul’s model but applies to any member of the class of preferences characterized in
Dillenberger (2010) and in Cerreia-Vioglio et al. (forthcoming).

6 This particular choice is not crucial for our result. That is, the argument could be made with many other possible
compositions of the urn. The recursive nonexpected utility model does not pin down the beliefs of the decision maker.
Our aim is thus to make our point using simple and plausible possible beliefs.
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TABLE 2
THE REFLECTION EXAMPLE

50 Balls 50 Balls

Act E1 E2 E3 E4

f 5 4,000 8,000 4,000 0
f 6 4,000 4,000 8,000 0
f 7 0 8,000 4,000 4,000
f 8 0 4,000 8,000 4,000

TABLE 3
THE SLIGHTLY BENT COIN PROBLEM

I Black White II Black White

Heads 8,000 0 Heads 0 0
Tails −8,000 0 Tails −8,000 8,000

We obtain that f 1 	 f 2 but f 4 	 f 3.

3.2. The Reflection Example. Consider the acts shown in Table 2.
The two acts f 5 and f 8 reflect each other, and the decision maker should therefore be indiffer-

ent between them. Likewise, f 6 should be indifferent to f 7. As by the Choquet expected utility
model f 5 � f 6 iff f 7 � f 8, it follows that f 5 ∼ f 6 (and f 7 ∼ f 8). Yet, as is argued by Machina
(2009, section III), ambiguity attitudes may well suggest strict preference within each pair.

Let α, β, γ, δ be a list of possible numbers of balls of the four types in the urn, where α + β =
γ + δ = 50. Denote by q(α, β, γ, δ) the probability the decision maker attaches to the event “the
composition of the urn is α, β, γ, δ.” We say that such beliefs are symmetric if

q(α, β, γ, δ) = q(β, α, δ, γ) = q(γ, δ, α, β) = q(δ, γ, β, α).

If beliefs are symmetric, then the recursive model implies f 5 ∼ f 8 and f 6 ∼ f 7, yet it does
not require f 5 ∼ f 6. In fact, it can be shown that such indifference will not hold in general. For
example, if q(10, 40, 25, 25) = 1

4 then we have f 6 	 f 5.

3.3. The Slightly Bent Coin Problem. A coin is flipped and a ball is drawn out of an urn.
You know that the coin is slightly bent (but you do not know which side is more likely or the
respective probabilities) and that the urn contains two balls, each is either white or black. Which
of the bets given in Table 3 do you prefer?

According to Machina (2014, section IV), it is plausible that an ambiguity averse decision
maker will prefer Bets I to II. The reason is that if the coin is only slightly biased, then betting
on the coin flip (as in Bet I) is less ambiguous than betting on the color of the ball (as in Bet II).
Yet he shows that a Choquet expected utility maximizer must be indifferent between the two
bets.

Consider first the urn with the two balls. As there is no reason to believe any bias in favor of
white or black, we assume that the decision maker believes that the probability of each of the
two events “there are two black balls” and “there are two white balls” is q, and the probability
of the event “there is one black and one white ball” is 1 − 2q.

The analysis of the coin is slightly more involved, as the decision maker does not know the
direction in which it is biased (heads or tails), nor does he know the magnitude of the bias (that
is, the probabilities p : 1 − p of the two sides). For simplicity, we assume that the bias of the coin
is equally likely to be either ε or −ε. We thus obtain six possible probability distributions over
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TABLE 4
POSSIBLE PROBABILITY DISTRIBUTIONS

Case # Pr(head), # of black Prob. hb hw tb tw

1 1
2 + ε, #b = 2 q

2
1
2 + ε 0 1

2 − ε 0

2 1
2 − ε, #b = 2 q

2
1
2 − ε 0 1

2 + ε 0

3 1
2 + ε, #b = 1 1

2 − q 1
4 + ε

2
1
4 + ε

2
1
4 − ε

2
1
4 − ε

2

4 1
2 − ε, #b = 1 1

2 − q 1
4 − ε

2
1
4 − ε

2
1
4 + ε

2
1
4 + ε

2

5 1
2 + ε, #b = 0 q

2 0 1
2 + ε 0 1

2 − ε

6 1
2 − ε, #b = 0 q

2 0 1
2 − ε 0 1

2 + ε

TABLE 5
THE UPPER/LOWER TAIL PROBLEM

Red Black White

Urn I 100 0 C
Urn II 0 C 100

TABLE 6
RECURSIVE ANALYSIS OF THE UPPER/LOWER TAIL PROBLEM

No. of Black Balls 2 1 0

Probability q 1 − 2q q

Urn I (0, 2
3 ; 100, 1

3 ) (0, 1
3 ; C, 1

3 ; 100, 1
3 ) (C, 2

3 ; 100, 1
3 )

Urn II (0, 1
3 ; C, 2

3 ) (0, 1
3 ; C, 1

3 ; 100, 1
3 ) (0, 1

3 ; 100, 2
3 )

the four possible events—heads-black (hb), heads-white (hw), tails-black (tb), and tails-white
(tw)—depicted in Table 4.

After dividing by 1,000, the payoffs of the two gambles are given by I = (8, hb; 0, hw;
−8, tb; 0, tw) and II = (0, hb; 0, hw; −8, tb; 8, tw). If ε = 0.05, and q = 0.25 we obtain that
I 	 II. On the other hand, setting ε = 0.25 and q = 0.05 (that is, the coin is seriously biased
but the decision maker believes that the two balls are most likely of different color) we obtain
that II 	 I.

3.4. The Upper/Lower Tail Problem. Let C denote your certainty equivalent of the lottery
(100, 1

2 ; 0, 1
2 ). Urns I and II contain each one red ball and two other balls, each of which is either

white or black. One ball is drawn from an urn of your choice, and the payoffs are given in
Table 5. Do you prefer to play urn I or II?

Machina shows that Choquet expected utility does not allow the decision maker to have strict
preferences between these two bets, that is, the model imposes indifference.

Using the analysis of “The slightly bent coin” above, the decision maker believes that the
probability of two black balls is q, the probability of two white balls is q, and the probability
of one black and one white ball is 1 − 2q. The two urns are thus transformed into two-stage
lotteries, given by Table 6, and we have I 	 II. This breaks the indifference implied by Choquet
expected utility, but disagrees with Machina’s prediction that an ambiguity averse decision
maker should prefer urns II to I.

4. CONCLUDING REMARKS

Machina (2009, 2014) showed that there are aspects of ambiguity aversion that arise in
choice over prospects involving three or more outcomes that cannot be handled by many
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popular models, including Choquet expected utility. As argued by Machina, the reason is that
these models impose too much separability in the way outcomes paid on different events are
aggregated in the evaluation procedure. In this article, we show that all these issues can be
accommodated by the two-stage recursive ambiguity model of Segal (1987) and, moreover, that
this can be done using the same functional form for all examples. In other words, the recursive
model, although consistent with the standard intuition of ambiguity aversion with respect to
Ellsberg’s (1961) examples, is rich enough not to impose connections within Machina’s pairs of
choices.

The reason Segal’s recursive model can handle these examples is that this model can impose
no separability between any two outcomes. This nonseparability has two sources. First, each
possible distribution over the outcomes is evaluated using a functional V that may impose
no separability between the outcomes. But even if V imposes some degree of separability,
the lottery over the certainty equivalents (of the possible lotteries) will link some of these
values, and as each of the certainty equivalents depends in general on all possible outcomes,
nonseparability will emerge. The only case in which this will not happen is when V itself imposes
full separability over outcomes. The only functional V to obtain full separability is expected
utility, which, as we explained in Section 2, is indeed the only functional that trivializes Segal’s
recursive model.
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