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1 Introduction

A large literature in macroeconomics has argued that changes in agents’ beliefs about

the future can be an important cause of economic fluctuations.1 This idea, which

dates at least to Pigou (1927), has been formalized in two ways. In the first way,

which we call a “news representation,” agents perfectly observe part of an exogenous

fundamental in advance. As an analogy, this is like learning today that in next week’s

big game your favorite team will certainly win the first half. You don’t know whether

they will win the game, which is ultimately what you care about, because you are still

unsure how the second half will turn out. In the second way, which we call a “noise

representation,” agents imperfectly observe an exogenous fundamental in advance.

This is like your friend telling you that he thinks your team will win next week’s

game. He follows the sport more than you do, and is often right, but sometimes he

gets it wrong.

Much of the literature emphasizes the differences between these two ways of repre-

senting agents’ beliefs.2 For example, in models with news, agents have full informa-

tion and shocks are perfectly anticipated; in models with noise, agents have imperfect

information and shocks are not perfectly anticipated. It has been suggested that

models with noise shocks may be more theoretically flexible, and require weaker as-

sumptions regarding the timing of information arrival. Others argue that models

with news shocks may be easier to estimate using semi-structural empirical methods,

which rely on fewer theoretical assumptions. Some studies include both news and

noise shocks in the same model and attempt to determine which is more important.

In this paper, we argue that news and noise representations are more closely linked

than the literature has recognized. Specifically, we prove that these two information

structures are observationally equivalent. This means that even given an ideal data

set with complete observations of exogenous fundamentals and agents’ beliefs about

those fundamentals, it would be impossible to tell them apart. It therefore follows

that neither representation requires stronger modeling assumptions for theoretical

work, or greater reliance on a model’s structural details for empirical work.

Our main result is a representation theorem, which says that fundamentals and

1Throughout the paper, we use the words “beliefs,” “expectations,” and “forecasts” as synonyms.
2This emphasis is often implicit in discussions of news and noise. Relatively explicit examples

include Sections 2 and 4.2.3 of Beaudry and Portier (2014), Sections 5 and 6 of Lorenzoni (2011),

Sections II.B and II.C of Blanchard et al. (2013), and the introduction of Barsky and Sims (2012).
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agents’ beliefs about them always have both a news representation and a noise rep-

resentation. This implies that associated with every noise representation is an obser-

vationally equivalent news representation and vice versa. We present a constructive

proof of the theorem using Hilbert space methods. Because it is constructive, our

proof also provides a method for explicitly deriving the mapping from one represen-

tation to another. We compute this mapping in closed form for several models of

interest from the literature.

The main step in moving from noise to news amounts to finding the Wold repre-

sentation of the noise model. This is because the shocks in the news representation are

static rotations of the Wold innovations implied by the noise representation. Because

the Wold innovations are contained in the space spanned by the history of variables

that agents observe, the news representation is a way of writing models with noise “as

if” agents have perfect information.3 To move in the opposite direction, from news

to noise, the idea is to reverse engineer the signal extraction problem that generates

a given Wold representation. The challenge is to ensure that the noise shocks in that

signal extraction problem are independent of fundamentals at all leads and lags, and

that they capture all the non-fundamental variation in beliefs.

Beyond clarifying the link between news and noise, our representation theorem

sheds new light on the importance of purely belief-driven fluctuations. Existing stud-

ies that either use models with only news shocks or some combination of news and

noise shocks do not isolate the pure contribution of beliefs above and beyond funda-

mentals. The reason is that news shocks mix the fluctuations due purely to beliefs

with the those due to fundamentals. News shocks can change beliefs on impact with-

out any change in current fundamentals, but they are tied by construction to changes

in future fundamentals. Beliefs change today, and on average fundamentals change

tomorrow. But which is more important, the change in beliefs or the subsequent

change in fundamentals?

To isolate the contribution of pure beliefs, it is necessary to disentangle the effects

due only to expected changes in fundamentals from the consequences of their actual

realizations.4 One way to do this is to first find a noise representation of the news-

3A related result is Lemma 2 of Blanchard et al. (2013), which shows that their information

structure has an observationally equivalent full information representation with correlated shocks.
4This point has been emphasized in the literature. For example, see the discussion in Section

IV.A of Barsky, Basu, and Lee (2015), as well as the recent paper by Sims (2016).
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shock model, and then consider the importance of noise shocks. Noise shocks isolate

precisely those movements in beliefs that are independent of fundamentals at all

horizons. Our representation theorem ensures that it is always possible to do this,

and our constructive proof provides a procedure for doing so.

The noise representation therefore allows us to decompose variation in endogenous

variables into the part purely due to fundamentals and the part purely due to beliefs.

It can also be used to further decompose the contribution of fundamentals into a part

due to future fundamental shocks, and a part due to current and past fundamental

shocks. The part due to future fundamental shocks represents the contribution of

correctly anticipated fundamental changes. In order for future fundamental shocks to

be an important driver of current actions, two things must be true. First, agents’ ac-

tions must depend to a sufficient degree on their expectations of future fundamentals.

Second, they must have access to accurate information about future fundamental

shocks that is not already revealed by current or past fundamental realizations.

We use our result to compute the importance of pure beliefs implied by three differ-

ent quantitative models of U.S. business cycles. The three models come from Schmitt-

Grohé and Uribe (2012), Barsky and Sims (2012), and Blanchard et al. (2013). These

models all appear to have very different information structures, which — combined

with differences in the rest of the physical environment, estimation procedure, and

data sample — has made it difficult to compare results across models. By allowing

us to isolate the independent contribution of beliefs in each model, our representation

theorem provides a way of coherently comparing them. We use the exact models

and estimated parameters from the original papers. Because news and noise repre-

sentations are observationally equivalent, the likelihood functions are the same under

either representation.

In all three cases, the importance of pure beliefs has been understated. In the

model of Schmitt-Grohé and Uribe (2012), there is no shock labeled “noise,” but

the implicit contribution of noise shocks is between 3% and 11% depending on the

variable. In the model of Barsky and Sims (2012), noise shocks are responsible for 9%

of the fluctuations in consumption, which is almost an order of magnitude larger than

the original estimate of 1%. In the model of Blanchard et al. (2013), the contribution

of noise to consumption is 57%, compared to the originally reported value of 44%.

While these models disagree sharply regarding the overall importance of noise

shocks, we find that they all agree that future fundamental shocks play a very small
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role compared to current and past fundamental shocks. For example, in the model

of Barsky and Sims (2012), future fundamentals are responsible for less than 0.5%

of consumption fluctuations, while current and past fundamentals are responsible for

over 80%. Future fundamentals matter the most in the model of Blanchard et al.

(2013), but even in that model they are responsible for less than 7% of consumption

fluctuations.

We conclude our paper by investigating the sources of disagreement across models

regarding the overall importance of noise shocks. We show that the disagreement

is due to differences both in the models’ economic environments and information

structures. For noise shocks to play a large role, agents’ actions need to depend heavily

on their forecasts of future fundamentals (economic environment), and their forecasts

in turn need to depend heavily on noise-ridden signals (information structure). The

model of Blanchard et al. (2013) has both of these features, which is why they find

a large role for noise shocks. In their model, productivity is a random walk, so

agents rely heavily on their noisy signal to forecast future productivity. Nominal

price and wage rigidity and an accommodative monetary policy rule work together to

make agents’ consumption decisions highly forward-looking, and allow the model to

generate empirically realistic patterns of co-movement in response to a noise shock.

To quantify the relative contribution of economic environment and information

structure on the estimated importance of noise shocks, we re-estimate the models of

Barsky and Sims (2012) and Blanchard et al. (2013) using the same data, exogenous

shocks, and estimation procedure (maximum likelihood) across both models. Con-

sistent with the authors’ original estimates, we find that noise shocks play a small

role in the model of Barsky and Sims (2012) and a much larger role in the model of

Blanchard et al. (2013). This suggests that differences in data, shocks, and estimation

procedure are not the primary reasons these models deliver different estimates of the

importance of noise shocks.

We then swap information structures and re-estimate both models. Substituting

the information structure of Blanchard et al. (2013) into the economic environment

of Barsky and Sims (2012) does almost nothing to change the estimated importance

of noise shocks. On the other hand, substituting the information structure of Barsky

and Sims (2012) into the economic environment of Blanchard et al. (2013) results in

an estimated importance of noise shocks that is about halfway between the original

estimates. This suggests that, while both economic environment and information
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structure play an important role in generating a large role for noise shocks, differ-

ences in environment turn out to be quantitatively more important in explaining the

disagreement between these two models.

The literature on both news and noise shocks is large. In the noise literature,

Lorenzoni (2009), Angeletos and La’O (2013), and Benhabib et al. (2015) have ex-

plored models in which dispersed information across agents can generate fluctuations

in beliefs that are independent of aggregate fundamentals; we restrict our analysis to

cases with a single, representative information set. In the news literature, Cochrane

(1994), Beaudry and Portier (2006), and Beaudry and Lucke (2010) all provide VAR-

based evidence pointing to an important role for news, and some empirical DSGE

studies not cited above, including Forni et al. (2017) and Christiano et al. (2014),

have estimated large roles for such shocks. Walker and Leeper (2011) and Leeper

et al. (2013) explore how the specification of news processes alters the effects of

news shocks on the dynamics of endogenous variables. Other related papers include

Jaimovich and Rebelo (2009), Beaudry et al. (2011), Lorenzoni (2011), Barsky and

Sims (2011), Born et al. (2013), Kurmann and Otrok (2013), and Jinnai (2014).

2 Observational Equivalence

News and noise representations are two different ways of describing economic fun-

damentals and agents’ beliefs about them. “Fundamentals” are stochastic processes

capturing exogenous changes in technology, preferences, endowments, or government

policy. Throughout this section, fundamentals are summarized by a single scalar pro-

cess {xt}. Agents’ decisions depend on expected future realizations of xt, so both

representations specify what agents can observe at each date and how they use their

observations to form beliefs about the future.

The main result of the paper, which is presented in this section, is a representation

theorem linking news and noise representations. The first subsection presents the

basic result in a simple example with news or noise regarding fundamentals only one

period in the future while the second subsection presents the more general result.
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2.1 Simple Example

In the simplest of news representations, xt is equal to the sum of two shocks, a0,t and

a1,t−1, which are independent and identically distributed (i.i.d.) over time, and which

are independent of one another:

xt = a0,t + a1,t−1,

[
a0,t

a1,t

]
iid∼ N

(
0,

[
σ2
a,0 0

0 σ2
a,1

])
. (1)

At each date t, agents observe the whole history of the two shocks up through that

date, {a0,τ , a1,τ} for all integers τ ≤ t. Their beliefs regarding fundamentals are

rational; the probabilities they assign to future outcomes are exactly those implied

by system (1). The shock a1,t is a news or anticipated shock because agents see it

at date t but it doesn’t affect the fundamental until date t + 1. The shock a0,t is a

surprise or unanticipated shock.

Now consider instead a noise representation. The fundamental variable xt is i.i.d.

over time, and there is a noisy signal of the fundamental one period into the future:

st = xt+1 + vt,

[
xt

vt

]
iid∼ N

(
0,

[
σ2
x 0

0 σ2
v

])
. (2)

At each date t, agents observe the whole history of fundamentals and signals up

through that date, {xτ , sτ} for all integers τ ≤ t. Even though agents only have

imperfect information about xt+1, their beliefs are nevertheless still rational. The

shock vt is a noise or error shock because it affects beliefs but is totally independent

of fundamentals.

Our point is that these two representations are observationally equivalent. But

before making that point, it is important to be clear about what types of things we

are considering to be “observable.” To be concrete, imagine an econometrician who is

able to observe the entire past, present, and future history of the fundamental process

{xt}, along with the entire past, present, and future history of agents’ subjective

beliefs regarding {xt}. More concisely, we will say that the econometrician observes

“fundamentals and beliefs.” All of our results are stated from the perspective of such

an econometrician, and are to be understood with respect to those observables.

An important feature of our concept of equivalence is that we treat beliefs, as

well as fundamentals, as observable. We take this approach for three reasons. First,

it is a stronger condition; observational equivalence with respect to a larger set of
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observables implies observational equivalence with respect to any smaller set of those

observables. Second, beliefs are observable in economics, in principle. Beliefs may

be measured directly, using surveys, or indirectly, using the mapping between beliefs

and actions implied by an economic model. That actions reflect beliefs is, after

all, a basic motivation for the literature on belief-driven fluctuations. Third, in a

broad class of linear rational expectations models with unique equilibria, endogenous

processes are purely a function of current and past fundamentals and beliefs about

future fundamentals. So observational equivalence of fundamentals and beliefs implies

observational equivalence of the entire economy.

We would also like to emphasize that the observability of beliefs distinguishes

our concept of observational equivalence from that often encountered in time series

analysis. To use a familiar example (cf. Hamilton, 1994, pp. 64-67), it is well-known

that

yt = εt − θεt−1 εt
iid∼ N (0, σ2) and yt = ε̃t − θ̃ε̃t−1 ε̃t

iid∼ N (0, σ̃2) (3)

are two observationally equivalent representations of the stationary MA(1) process

{yt} when θ̃ = 1/θ and σ2 = θ2σ̃2. However, this applies only when {yt} is the sole

observable. If (rational) expectations of future values of {yt} are also observable,

then the two representations in (3) are no longer the same. To see why, note that the

variance of the one-step-ahead rational forecast ŷt ≡ Et[yt+1] is equal to θ2σ2 under the

first representation, but σ2 under the second. Therefore, an econometrician observing

{ŷt} and {yt} (or independent functions of these objects) could discriminate between

these two representations.

The following proposition states the equivalence result for the simple example of

this subsection, and provides the parametric mapping from one representation to the

other. Its proof is in the Appendix.

Proposition 1. The news representation (1) is observationally equivalent to the noise

representation (2) if and only if:

σ2
x = σ2

a,0 + σ2
a,1 and

σ2
v

σ2
x

=
σ2
a,0

σ2
a,1

.

The intuition behind the result comes from the fact that the noise representation

implies an observationally equivalent innovations representation (cf. Anderson and
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Moore, 1979, ch. 9) of the form:

xt = x̂t−1 + w0,t

x̂t = κw1,t

[
w0,t

w1,t

]
iid∼ N

(
0,

[
κσ2

v 0

0 σ2
x + σ2

v

])
, (4)

where κ = σ2
x/(σ

2
x + σ2

v) is a Kalman gain parameter controlling how much agents

trust the noisy signal, and wt ≡ (w0,t, w1,t)
′ is the vector of Wold innovations. But

system (4) is the same as the news representation in system (1) when a0,t = w0,t and

a1,t = κw1,t. The news shocks are linear combinations of the Wold innovations.

A direct implication of Proposition (1) is that the news representation is identified

if and only if the noise representation is identified. By observational equivalence,

both representations have the same likelihood function. Because the relations in

Proposition (1) define a bijection, it is always possible to go from one set of parameters

to the other and vice versa. This suggests that the distinction often made between

news and noise representations in the literature on semi-structural empirical methods

may be misleading.

Proposition (1) also reveals that noise shocks are closely related to a popular

thought experiment in the news-shock literature, which some researchers have used

to isolate the effects of a change in beliefs that does not correspond to any change

in fundamentals (e.g. Christiano et al. (2010) Section 4.2, Schmitt-Grohé and Uribe

(2012) Section 4.2, Barsky, Basu, and Lee (2015) Section IV.A, or Sims (2016) Sec-

tion 3.3). This experiment involves computing the impulse responses of endogenous

variables to a current news shock followed by an offsetting future surprise shock.

In this simple example, it is easy to see that the noise shocks generate exactly

the sort of offsetting news shocks envisioned by this thought experiment. Using

the Kalman filter, the surprise and news shocks can be expressed as functions of

fundamental and noise shocks:

a1,t = κxt+1 + κvt and a0,t = (1− κ)xt − κvt−1.

Therefore, a positive noise shock at date t generates a positive news shock at date t

and an exactly offsetting surprise shock at date t+ 1.

This example shows that it may be possible to mimic noise shocks using particular

linear combinations of news shocks. Nevertheless, there are a number of advantages

to working directly with noise shocks. First, we can think about how often these
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situations arise, since we have an explicit probability distribution for the noise shocks:

for example, how big is a “one standard deviation impulse” of a news reversal? Second,

we can ask how important these types of news reversals are in the data overall; that

is, we can do a proper variance decomposition. Third, in models with news shocks

that are not i.i.d., it is not as straightforward to determine the configuration of news

shocks that correspond to a noise shock. Therefore, it is desirable to have a more

general characterization of the link between news and noise shocks. We turn to this

more general characterization next.

2.2 Representation Theorem

This subsection generalizes the previous example to allow for news and noise at mul-

tiple future horizons, and potentially more complex time-series dynamics. To fix

notation, we use L2 to denote the space of (equivalence classes of) complex random

variables with finite second moments, which is a Hilbert space when equipped with

the inner product (a, b) = E[ab̄] for any a, b ∈ L2. Completeness of this space is with

respect to the norm ‖a‖ ≡ (a, a)1/2. For any collection of random variables in L2,

{yi,t}, with i ∈ Iy ⊆ Z and t ∈ Z,

we let H(y) denote the closed subspace spanned by the variables yi,t for all i ∈ Iy
and t ∈ Z. Similarly, Ht(y) denotes the closed subspace spanned by these variables

over all i but only up through date t.

Fundamentals are summarized by a scalar discrete-time process {xt}. As in the

previous subsection, this process is taken to be mean-zero, stationary, Gaussian, and

purely non-deterministic.5 The fact that {xt} is a scalar process is not restrictive;

we can imagine a number of different scalar processes, each capturing changes in one

particular fundamental. In that case it will be possible to apply the results from this

section to each fundamental one at a time.

Agents’ beliefs about fundamentals are summarized by a collection of random

variables {x̂i,t}, with i, t ∈ Z, where x̂i,t represents the forecast of the fundamental

realization xt+i as of time t. Under rational expectations, x̂i,t is equal to the math-

ematical expectation of xt+i with respect to a particular date-t information set. We

5The results in this section can be extended, in an appropriate limiting sense, to processes that

are stationary only after suitable differencing. We will examine one such case in Section (4.3).
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assume that {xt} and {x̂i,t} jointly form a Gaussian system; that is, the vector formed

by any finite subset of these random variables is Gaussian. This allows us to summa-

rize agents’ entire conditional distribution over fundamentals at each date solely by

their conditional expectations across different horizons.

A “representation of fundamentals and beliefs” means a specification of the funda-

mental process {xt} and the collection of agents’ conditional expectations about that

process at each point in time {x̂i,t}. A typical assumption is that agents’ information

set is equal to Ht(x), so x̂i,t ∈ Ht(x) for all t ∈ Z. In this case, the process {xt} is

itself sufficient to describe both the fundamental and agents’ beliefs about it. A key

departure in models of belief-driven fluctuations due to advance information is that

agents may have more information than what is reflected in Ht(x) alone. Therefore,

throughout the paper we maintain the assumption that Ht(x) ⊆ Ht(x̂) for all t ∈ Z.

Definition 1. In a “news representation” of fundamentals and beliefs, the process

{xt} is related to a collection of independent, stationary Gaussian processes {ai,t}
with i ∈ Ia ⊆ Z+ by the summation

xt =
∑
i∈I

ai,t−i for all t ∈ Z,

where agents’ date-t information set is Ht(a).

The idea behind this representation is that agents observe parts of the fundamental

realization xt prior to date t. The variable εai,t ≡ ai,t − E[ai,t|Ht−1(a)] is called the

“news shock” associated with horizon i whenever i > 0. By convention, for i = 0

the variable εa0,t is referred to as the “surprise shock.” An important aspect of this

definition is that all of the news shocks are correlated both with fundamentals and

agents’ beliefs. This is because any increase in fundamentals that agents observe in

advance must, other things equal, generate a one-for-one increase in fundamentals at

some point in the future.

Definition 2. In a “noise representation” of fundamentals and beliefs, there is a

collection of signal processes {si,t} with i ∈ Is ⊆ Z+ of the form

si,t = mi,t + vi,t for all t ∈ Z,

where mi,t ∈ H(x), vi,t ⊥ H(x), and agents’ date-t information set is Ht(s), which

satisfies Ht(s) = Ht(x̂).
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The idea behind this representation is that agents may receive signals about the

fundamental realization xt prior to date t, but those signals are contaminated with

noise. The variable εvi,t ≡ vi,t − E[vi,t|Ht−1(v)] is called the “noise shock” associated

with signal i. The variable εxt ≡ xt−E[xt|Ht−1(x)] is called the “fundamental shock.”

An important aspect of this definition is that all of the noise shocks are completely

independent of fundamentals, but because agents cannot separately observe mi,t and

vi,t at date t, their beliefs are still affected by noise. The condition thatHt(s) = Ht(x̂)

simply rules out redundant or totally uninformative signals.

With these definitions in hand, we are ready to state the main result of the paper.

Its proof is in the Appendix.

Theorem 1. Fundamentals and beliefs always have both a news representation and

a noise representation. Moreover, the news representation is unique.

This theorem clarifies the sense in which news and noise representations of fun-

damentals and beliefs are really just two sides of the same coin. It is possible to

view the same set of data from either perspective. The proof is constructive, which

means that it also provides an explicit computational method for passing from one

representation to the other.

The only asymmetric aspect of the theorem involves the uniqueness of the two

representations. Any particular news representation will be compatible with several

different noise representations. This is the same sort of asymmetry present between

signal models representations and innovations representations in the literature on

state-space models. In general there exist infinitely many signal models with the

same innovations representation. We explain in the subsequent sections, however,

that this multiplicity of noise representations does not pose much of a problem.

An implication of Theorem (1) is that any model economy with a news represen-

tation of fundamentals and beliefs has an observationally equivalent version with a

noise representation of fundamentals and beliefs, and vice versa. This is because the

equivalence of fundamentals and beliefs implies the equivalence of any endogenous

processes that are functions of them. To make this statement more precise, we first

define here what we mean by an endogenous process, and then present this statement

as a proposition. The proof of the proposition, together with all remaining proofs,

are contained in the Online Appendix.
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Definition 3. Given a fundamental process {xt} and a collection of forecasts {x̂i,t}
satisfying Ht(x) ⊂ Ht(x̂), a process {ct} is “endogenous” with respect to {xt} if

ct ∈ Ht(x̂) for all t ∈ Z.

Proposition 2. If two different representations of fundamentals and beliefs are ob-

servationally equivalent, then they imply observationally equivalent dynamics for any

endogenous process.

The stipulation in Definition (3) that endogenous processes be linearly related to

agents’ forecasts of fundamentals is not restrictive. Proposition (2) holds even if we

generalize the definition of an endogenous process {ct} to require only that ct be mea-

surable with respect to agents’ date-t information set for all t ∈ Z (the proof provided

in the Online Appendix establishes this stronger result). Together with Theorem (1),

this means that as long as fundamentals and beliefs form a Guassian system, any non-

linear economy that allows for belief-driven fluctuations can be equivalently written

with either news or noise shocks.

Throughout the rest of the paper, however, we will retain the restriction of lin-

earity in Definition (3). This is because the definitions of many objects of economic

interest, such as variance decompositions, are typically defined only for linear models.

Therefore, it is most natural to present our results in terms of endogenous variables

that can be expressed as linear functions of agents’ forecasts. Furthermore, all of the

quantitative models we consider in Section (4) rely on linear-approximate equilibrium

dynamics.

3 The Importance of Pure Beliefs

A central question in the literature on belief-driven fluctuations is: how important

are purely belief-driven fluctuations? That is, fluctuations due to changes in beliefs

that cannot be explained by any actual change in economic fundamentals. Perhaps

surprisingly, it turns out that no existing quantitative study in this literature has

answered this question. Some studies report the importance of news shocks, which

combine the contribution due to fundamentals with the contribution purely due to

beliefs. Others include noise shocks and news shocks in the same model, and as a

result, do not isolate the contribution of either one. In this section we argue that
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Theorem (1) provides a way to determine the importance of pure beliefs as a driver

of fluctuations.

The first subsection explains the problem with using news shocks to determine

the importance of pure beliefs, and the second subsection clarifies the problems that

arise when attempting to include both news and noise shocks in the same model.

To keep things clear, the discussion of both of these issues is framed in terms of the

simple example from Section (2.1). The third subsection establishes a result regarding

the uniqueness of variance decompositions. The fourth subsection discusses how to

further decompose the contribution of fundamental shocks into parts due to past,

present, and future fundamental shocks.

3.1 The Problem with News Shocks

In the context of dynamic linear models, the importance of a set of exogenous shocks

can be determined by performing a variance decomposition. This entails computing

the model-implied variance of an endogenous process under the assumption that all

shocks other than those in the set of interest are counterfactually equal to zero almost

surely, and comparing that variance to the unconditional variance of the process.

More nuanced versions include only considering variation over a certain range of

spectral frequencies, or variation in forecast errors over a certain forecast horizon.

The problem with using news shocks to determine the importance of pure beliefs

is that news shocks mix changes that are due to fundamentals and changes that are

purely due to beliefs. This is because a news shock is an anticipated change in fun-

damentals. Expectations change at the time the news shock is realized, but then

fundamentals change in the future when the anticipated change actually occurs. Of

course, agents’ expectations may not always be fully borne out in future fundamen-

tal realizations, due to other unforeseen disturbances. Nevertheless, the anticipated

shock is borne out on average, which is to say that news shocks are related to future

fundamentals on average.

A stark way to see this point is to consider the importance of pure beliefs for

driving fundamentals. Because fundamentals are exogenous, they are obviously not

driven by beliefs at all. However, in the simple news representation from Section

(2.1), for example, news shocks can be responsible for an arbitrarily large part of

the fluctuations in the fundamental process {xt}. Recall that in that example, xt =
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a0,t+a1,t−1. Therefore, the fraction of the variation in {xt} due to news shocks, {a1,t}
is given by:

var[xt|a0,t = 0]

var[xt]
=

var[a1,t]

var[xt]
=

σ2
a,1

σ2
a,0 + σ2

a,1

. (5)

As σ2
a,1 increases relative to σ2

a,0, this fraction approaches one, in which case news

shocks would explain all the variation in {xt}.
To disentangle the importance of pure beliefs from fundamentals in models with

news shocks, we can use Theorem (1). Specifically, we can write down an observa-

tionally equivalent noise representation of the news model, and then use a variance

decomposition to compute the share of variation attributable to noise shocks. Because

these shocks are independent of fundamentals at all horizons, they capture precisely

those changes in beliefs that cannot be explained by fundamentals. That is, noise

shocks are pure belief shocks.

Returning to the example from Section (2.1), we have already shown that an

observationally equivalent noise representation involves xt
iid∼ N (0, σ2

x) with σ2
x ≡

σ2
a,0 + σ2

a,1. Therefore, the fraction of variation in {xt} due to noise shocks is:

var[xt|xt = 0]

var[xt]
= 0,

which is the correct answer to the question of how much beliefs contribute to the

fluctuations of fundamentals. This example illustrates the more general point that

in order to determine the importance of pure beliefs, one should perform variance

decompositions in terms of noise shocks rather than news shocks.

The fact that variance decompositions in terms of news shocks are not appro-

priate for determining the importance of pure beliefs has lead some researchers to

conclude that there is a fundamental problem with using variance decompositions

for that purpose.6 We would like to suggest that the problem is not with variance

decompositions as such; rather, the problem is with the type of shock one considers.

It is noise shocks, not news shocks, that are the appropriate shocks for isolating the

independent contribution of beliefs. Once that distinction has been made, traditional

variance decompositions can be performed as usual.

6For example, Sims (2016) p.42 describes the problem of identifying the importance of pure

beliefs (which both he and Barsky et al. (2015) call “pure news”) as a fundamental limitation of the

traditional variance decomposition.
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3.2 Mixing News and Noise Shocks

In some cases, researchers have constructed representations of fundamentals and be-

liefs that seem to include both news and noise shocks at the same time (e.g. Blanchard

et al., 2013; Barsky and Sims, 2012). A simple example is:

xt = µt−1 + ηt

st = µt + ξt

 ηt

µt

ξt

 iid∼ N

0,

 σ2
η 0 0

0 σ2
µ 0

0 0 σ2
ξ


 . (6)

At each date t, agents observe {xτ , sτ} for all τ ≤ t. The shock µt looks like a

news shock because it affects agents’ beliefs at date t (through the signal st), but does

not affect fundamentals until the following period. Similarly, the shock ηt looks like

a surprise shock because it affects agents’ beliefs and the fundamental at the same

time. Finally, the shock ξt looks like a noise shock because it affects agents’ beliefs

but is independent of fundamentals.

The problem with this type of representation, at least from the perspective of

isolating the importance of pure beliefs, is that while ξt can generate non-fundamental

fluctuations in beliefs, so can certain combinations of ηt and µt. To see this, notice

that in the limit case ξt = 0, we have that st = µt and this representation collapses

to a news representation with a0,t ≡ ηt and a1,t ≡ µt. We have already seen in

Proposition (1) that such a news representation has an observationally equivalent

noise representation with (non-zero) noise shocks. Therefore ξt = 0 does not mean

that beliefs do not have an independent role to play as a driver of fluctuations.7

Of course, Theorem (1) implies that the representation in (6), which is neither

news or noise representation, still has an observationally equivalent noise representa-

tion. The following proposition presents the mapping from one representation to the

other.

Proposition 3. The representation of fundamentals and beliefs in (6) is observation-

ally equivalent to the noise representation in (2) if and only if:

σ2
x = σ2

µ + σ2
η and

σ2
v

σ2
x

=
σ2
µ(σ2

η + σ2
ξ ) + σ2

ησ
2
ξ

σ4
µ

.

7In two of the quantitative models we consider in the next section, this distinction is particularly

stark; the contribution of pure beliefs turns out to increase as σ2
ξ → 0.
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To see how the process {ξt} understates the importance of pure beliefs, consider

the endogenous variable x̂t = Et[xt+1]. Under representation (6), x̂t =
σ2
µ

σ2
µ+σ2

ξ
(µt + ξt),

so the contribution of the process {ξt} is

var[x̂t|µt = ηt = 0]

var[x̂t]
=

σ2
ξ

σ2
µ + σ2

ξ

.

On the other hand, in the observationally equivalent noise representation implied by

Proposition (3), x̂t = σ2
x

σ2
x+σ2

v
(xt+1 + vt). Therefore, the contribution of {vt} is

var[x̂t|xt = 0]

var[x̂t]
=

σ2
v

σ2
x + σ2

v

=
σ2
µσ

2
η

(σ2
µ + σ2

η)(σ
2
µ + σ2

ξ )
+

σ2
ξ

σ2
µ + σ2

ξ

,

where the second equality uses the parametric restrictions from Proposition (3). Be-

cause the first term in this expression is positive, it follows that {ξt} understates the

importance of pure beliefs for explaining variations in {x̂t}. It is also easy to see how

the importance of pure beliefs can be strictly positive even as σ2
ξ → 0.

3.3 Different Noise Representations

So far we have argued that it is possible to use a noise representation to separate

fluctuations that are due to actual changes in fundamentals versus those that are due

purely to changes in beliefs. First, one can rewrite any representation of fundamentals

and beliefs as a noise representation using the constructive procedure from Theorem

(1). Then, one can use a variance decomposition to determine the share of variation in

any endogenous variable that is attributable to noise shocks. And this share represents

the contribution purely due to non-fundamental changes in beliefs.

But is the variance decomposition in terms of noise shocks unique? As we pointed

out in the discussion of Theorem (1), any representation of fundamentals and beliefs is

compatible with infinitely many different noise representations. Fortunately, it turns

out that all observationally equivalent noise representations deliver the same answer

regarding the importance of pure beliefs for any endogenous process. For variance

decompositions, the fact that noise representations are not unique is not a problem.

Proposition 4. In any noise representation of fundamentals and beliefs, the vari-

ance decomposition of any endogenous process in terms of noise and fundamentals is

uniquely determined over any frequency range.
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An immediate corollary of this proposition is that the variance decomposition of

agents’ errors in forecasting an endogenous process is also uniquely determined for

any forecast horizon. This is because the forecast errors are themselves endogenous

processes to which Proposition (4) applies.

Corollary 1. In any noise representation of fundamentals and beliefs, the forecast

error variance decomposition of any endogenous process in terms of noise and funda-

mentals is uniquely determined for any horizon, and over any frequency range.

3.4 Past, Present, and Future Fundamentals

Our discussion in this section has focused on the distinction between the relative

contributions of fundamental shocks and non-fundamental noise shocks. However,

it is also possible to further decompose the contribution of fundamental shocks into

parts separately due to past, present, and future fundamental shocks. Even if news

shocks don’t capture the contribution of noise shocks, maybe they capture something

like the sum of the contribution of noise shocks and future fundamental shocks.

While that intuition seems sensible enough, it turns out to be incorrect. But

before explaining why, we first show how to separately determine the contribution

of past, present, and future fundamental shocks. Recall the i.i.d. noise model from

Section (2.1),

st = xt+1 + vt,

[
xt

vt

]
iid∼ N

(
0,

[
σ2
x 0

0 σ2
v

])
,

and consider an endogenous variable that depends on past, present, and expected

future fundamentals with weights φ−1, φ0, and φ1 respectively:

ct = φ−1xt−1 + φ0xt + φ1Et[xt+1]. (7)

Solving the signal-extraction problem to obtain the optimal forecast, we have

ct = φ−1xt−1 + φ0xt + φ1κxt+1 + φ1κvt, (8)

where κ ≡ σ2
x/(σ

2
x + σ2

v) is the gain parameter.

Since the fundamental and noise processes are both i.i.d., we can decompose the

variance of ct into four parts,

var[ct] = φ2
−1σ

2
x︸ ︷︷ ︸

past fundamentals

+ φ2
0σ

2
x︸︷︷︸

present fundamentals

+ φ2
1κ

2σ2
x︸ ︷︷ ︸

future fundamentals

+φ2
1κ

2σ2
v︸ ︷︷ ︸

noise

, (9)
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where the sum of the first three parts equals the total contribution of fundamentals.

Notice from this equation that even when there are no noise shocks (σv = 0), the

contribution of future fundamentals is not necessarily equal to zero. In that case, κ =

1, so the share of the variance of ct due to future fundamentals would be φ2
1/(φ

2
−1+φ2

0).

More generally, we can use the noise representation of fundamentals and beliefs

to uniquely decompose any endogenous variable as

ct =
∞∑

j=−∞

αjε
x
t−j︸ ︷︷ ︸

fundamentals

+
∞∑
j=0

βjε
v
t−j︸ ︷︷ ︸

noise

=
∞∑
j=1

αjε
x
t−j︸ ︷︷ ︸

past fundamentals

+ α0ε
x
t︸ ︷︷ ︸

present fundamentals

+
−1∑

j=−∞

αjε
x
t−j︸ ︷︷ ︸

future fundamentals

+
∞∑
j=0

βjε
v
t︸ ︷︷ ︸

noise

, (10)

where {εxt } are the fundamental shocks, and {εvt } are the noise shocks. Because the

shocks are i.i.d., the variance of ct is equal to the sum of the variances in each of the

four terms on the right, just as in equation (9). The uniqueness of the decomposition

in equation (10) is summarized in the following proposition.

Proposition 5. In any noise representation of fundamentals and beliefs, the share

of the variance of any endogenous process due to past, present, or future fundamental

shocks is uniquely determined.

Going back to equation (7), we can show that the contribution of news shocks is not

equal to the sum of the contribution of future fundamental shocks and noise shocks.

Consider the contribution of news shocks for ct in the special case that φ−1 = φ1 = 0

and φ0 = 1, so that ct = xt. In this case, the contribution of future fundamentals and

noise are both zero; all that matters for ct is the current fundamental realization. But

we have already seen in equation (5) that news shocks can be arbitrarily important

for explaining fluctuations in {xt}. This is because past news shocks eventually show

up as changes in current fundamentals. Therefore, news shocks can be very important

even when both noise shocks and future fundamentals are not.

On the other hand, if the contribution of news shocks is small, that does tell us

that the contribution of both future shocks and noise shocks must be small as well.

To see this, we can use equation (9) and Proposition (1) to write the part of the

variance of ct due to future fundamentals shocks and noise shocks in terms of the
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corresponding parameters from the observationally equivalent news representation:

φ2
1κ

2σ2
x + φ2

1κ
2σ2

v = φ2
1

σ4
a,1

σ2
a,0 + σ2

a,1

+ φ2
1

σ2
a,0σ

2
a,1

σ2
a,0 + σ2

a,1

.

As the variance of news shocks, σ2
a,1, approaches zero, this expression also approaches

zero (term by term). From this we can conclude that a large contribution of news

shocks is necessary but not sufficient for there to be a large contribution of either

future fundamental shocks or noise shocks.

One difference relative to Proposition (4) is that Proposition (5) does not apply

“over any frequency range.” It only applies to unconditional variance decompositions;

that is, to decompositions across all frequencies λ ∈ [−π, π]. The distinction between

past, present, and future makes sense in the time domain, but not in the frequency

domain. Either we can look at the contribution of fundamentals over different time

ranges or frequency ranges, but not both at the same time.

Finally, it is worth noting that the extent to which an endogenous process depends

on future fundamental shocks depends on both the physical economic environment

and agents’ information structure. In equation (8), the weight of ct on xt+1 depends

both on φ1 and κ. If the economic model is not sufficiently “forward-looking,” so

φ1 → 0, then the share of future fundamentals will be small. Perhaps less intuitively,

if κ→ 0 then the share of future fundamentals will also be small. Even if the model

is forward-looking, so φ1 > 0, future fundamental shocks can still be unimportant

for current actions if the only information agents have about future fundamentals is

completely contained in current and past fundamentals. Note that this is true even

if the model is purely forward looking; that is, when φ−1 = φ0 = 0 and φ1 > 0.

4 Quantitative Analysis

In this section, we use Theorem (1) and Proposition (4) to empirically quantify the

importance of pure beliefs in driving business-cycle fluctuations. Because several

models of belief-driven fluctuations have already been constructed and estimated in

the literature, we take a meta-analytic perspective. We select three prominent theo-

retical models that have been estimated in the literature and compute the importance

of pure beliefs implied by each of those models for different macroeconomic variables

(e.g. output, investment, etc.). The three models are the model of news shocks from
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Schmitt-Grohé and Uribe (2012), the model of news and animal spirits from Barsky

and Sims (2012), and the model of noise shocks from Blanchard et al. (2013).

These three models are different in several respects. First, they incorporate differ-

ent physical environments, including differences in preferences, frictions and market

structure. Second, the three models are estimated on different data and with different

sample periods. Third, the authors make different assumptions about the information

structure faced by agents. While agents in all three models observe current funda-

mentals and receive advance information about future fundamentals, Schmitt-Grohé

and Uribe (2012) take a pure news perspective while the Barsky and Sims (2012) and

Blanchard et al. (2013) offer somewhat different perspectives on combining news and

noise within a single model.

Perhaps not surprisingly given the scope of these differences, the authors above

come to very different conclusions. Schmitt-Grohé and Uribe (2012) conclude that

news shocks explain about one half of aggregate fluctuations, but do not take an

explicit stance on the importance of independent fluctuations in beliefs. Barsky and

Sims (2012) also conclude that news shocks are important, and that noise shocks

explain essentially none of the variation in any variable. However, Blanchard et al.

(2013) conclude that noise shocks play a crucial role in business cycle dynamics,

especially for consumption.

In principle, it is possible that these different conclusions are largely a result of the

different “normalizations” the authors take with respect to noise shocks. Indeed, our

analysis indicates that all authors have (implicitly or explicitly) underestimated the

actual of role of pure beliefs in their estimated models. For Schmitt-Grohé and Uribe

(2012) and Barsky and Sims (2012), we find that the role of noise rises from being

essentially zero to being small but non-trivial, generally between 3% and 11% at the

business cycle frequency. Surprisingly, even Blanchard et al. (2013) underestimate

the role of noise shocks in driving their economy, with pure beliefs about productivity

driving endogenous variables more than productivity itself.

While our results indicate that noise shocks are more important than previously

reported, they do not fully explain the degree of disagreement regarding the inde-

pendent contribution of beliefs. To understand the remaining differences, we perform

a series of exercises, including re-estimating different versions of these models after

swapping information structures.
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4.1 Schmitt-Grohé and Uribe (2012)

The first model comes from Schmitt-Grohé and Uribe (2012), and was constructed

to determine the importance of news shocks for explaining aggregate fluctuations in

output, consumption, investment, and employment. The main result of their paper

is that news shocks account for about half of the predicted aggregate fluctuations in

those four variables. As we have seen in the previous section, however, news shocks

mix fluctuations due to beliefs and fundamentals. As a result, exactly what this

model implies about the importance of pure beliefs is still an unanswered question.

The model is a standard real business cycle model with six modifications: invest-

ment adjustment costs, variable capacity utilization with respect to the capital stock,

decreasing returns to scale in production, one period internal habit formation in con-

sumption, imperfect competition in labor markets, and period utility allowing for a

low wealth effect on labor supply. Fundamentals comprise seven different indepen-

dent processes, which capture exogenous variation in stationary and non-stationary

neutral productivity, stationary and non-stationary investment-specific productivity,

government spending, wage markups, and preferences. The model is presented in

more detail in Online Appendix (B.1).

Each of the seven exogenous fundamentals follows a law of motion:

xt = ρxxt−1 + εa0,t + εa4,t−4 + εa8,t−8,

 εa0,t

εa4,t

εa8,t

 iid∼ N

0,

 σ2
a,0 0 0

0 σ2
a,4 0

0 0 σ2
a,8


 . (11)

where 0 < ρx < 1. The model is estimated by likelihood-based methods on a sample of

quarterly U.S. data from 1955:Q2 to 2006:Q4. The time series used for estimation are:

real GDP, real consumption, real investment, real government expenditure, hours,

utilization-adjusted total factor productivity, and the relative price of investment.

A variance decomposition shows that news shocks turn out to be very important.

The first column of Table (1) shows the share of business-cycle variation in the level of

four endogenous variables that is attributable to surprise shocks {εa0,t}, and the second

column shows the share attributable to the news shocks {εa4,t} and {εa8,t} combined.

We define business cycle frequencies as the components of the endogenous process

with periods of 6 to 32 quarters, and we focus on variance decompositions over these

frequencies to facilitate comparison across the different models in this section. Our

results are consistent with the authors’ original findings (see their Table V).
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However, to determine the contribution of beliefs relative to fundamentals, we

would like to construct a noise representation that is observationally equivalent to

representation (11). One such noise representation is in the following proposition.

Proposition 6. The representation of fundamentals and beliefs in system (11) is

observationally equivalent to the noise representation

xt = ρxxt−1 + εxt

s4,t = εxt+4 + v4,t

s8,t = εxt+8 + v8,t,

 εxt

v4,t

v8,t

 iid∼ N

0,

 σ2
x 0 0

0 σ2
v,4 0

0 0 σ2
v,8




with the convention that s0,t ≡ xt, and where

σ2
x = σ2

a,0 + σ2
a,4 + σ2

a,8

σ2
v,4 =

1

σ2
a,4

σ2
a,0(σ2

a,0 + σ2
a,4)

σ2
v,8 =

1

σ2
a,8

(σ2
a,0 + σ2

a,4)(σ2
a,0 + σ2

a,4 + σ2
a,8).

We can use the noise representation in Proposition (6) with the same param-

eter estimates as before, and re-compute the variance decomposition of the seven

observable variables in terms of fundamental shocks and noise shocks. This decom-

position is unique by Proposition (4). There is no need to re-estimate the model

because observational equivalence implies that the likelihood function is the same

under both representations. The third column of Table (1) shows the share of varia-

tion attributable to fundamental shocks {εxt }, and the fourth column shows the share

attributable to the noise shocks {v4,t} and {v8,t} combined.

The main result is that nearly all of the variation in output, consumption, invest-

ment, and hours is due to fundamentals. In terms of differences across the endogenous

variables, it is interesting that real investment growth is affected the least by news

shocks, but it is affected the most by noise shocks. At the same time, hours worked

is affected the most by news shocks and the least by noise shocks. But based on

the fact that 89% or more of the variation in every series is attributable to funda-

mental changes, we conclude that beliefs are not an important independent source of

fluctuations through the lens of this model.
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Variable Surprise News Fundamental Noise

Output 57 43 94 6

Consumption 50 50 95 5

Investment 55 45 89 11

Hours 16 84 97 3

Table 1: Variance decomposition (%) in the model of Schmitt-Grohé and Uribe (2012)

over business cycle frequencies of 6 to 32 quarters. All variables are in levels. Esti-

mated model parameters are set to their posterior median values.

4.2 Barsky and Sims (2012)

The second model comes from Barsky and Sims (2012). It was constructed to de-

termine whether measures of consumer confidence change in ways that are related

to macroeconomic aggregates because of noise (i.e. “animal spirits”) or news. The

main result of the paper is that changes in consumer confidence are mostly driven

by news and not noise. Noise shocks account for negligible shares of the variation in

forecast errors of consumption and output, while news shocks account for over half

of the variation in long-horizon forecast errors. However, as we saw in Section (3.2),

including both news and noise shocks in the same model can be problematic when it

comes to isolating the importance of pure beliefs.

The model is a standard New-Keynesian DSGE model with real and nominal

frictions: one period internal habit formation in consumption, capital adjustment

costs (as opposed to investment adjustment costs, according to which costs are a

function of the growth rate of investment rather than the level of investment relative to

the existing capital stock), and monopolistic price setting with time-dependent price

rigidity. Fundamentals comprise three different independent processes, which capture

exogenous variation in non-stationary neutral productivity, government spending, and

monetary policy. More details are in Online Appendix (B.2).

Agents only receive advance information about productivity, and not about the

other two fundamentals. So it is only pure beliefs about productivity that can play

an independent role in driving fluctuations. Letting xt denote the growth rate of

productivity (in deviations from its mean), and using our notation from Section (3.2),
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the process {xt} is assumed to follow a law of motion of the form:

xt = µt−1 + ηt

µt = ρµt−1 + εµt

st = µt + ξt

 εµt

ηt

ξt

 iid∼ N

0,

 σ2
µ 0 0

0 σ2
η 0

0 0 σ2
ξ


 , (12)

where 0 < ρ < 1. Barsky and Sims (2012) refer to εµt as a news shock, ηt as a

surprise shock, and ξt as a noise (animal spirits) shock.8 However, these definitions

are not consistent with the definitions in our paper. To avoid any confusion we will

use asterisks to indicate the terminology of Barsky and Sims (2012). So we refer to

εµt as a news* shock, ηt as a surprise* shock, and ξt as a noise* shock.

The model is estimated by minimizing the distance between impulse responses

generated from simulations of the model and those from estimated structural vector

autoregressions. The vector autoregressions are estimated on quarterly U.S. data

from 1960:Q1 to 2008:Q4. The time series used to estimate the vector autoregression

are real GDP, real consumption, CPI inflation, a measure of the real interest rate, and

a measure of consumer confidence from the Michigan Survey of Consumers (E5Y).

A variance decomposition shows that news* shocks are much more important than

noise* shocks. The first column of Table (2) shows the share of business-cycle variation

in the level of four endogenous variables that is attributable to surprise* shocks {ηt},
the second shows the share attributable to news* shocks {εµt }, and the third shows the

share attributable to noise* shocks {ξt}. Due to the presence of exogenous government

spending and monetary policy shocks, the rows do not sum to 100%; the residual

represents the combined contribution of these two additional fundamental shocks.

These results are consistent with the authors’ original findings, which are stated in

terms of the variance decompositions of forecast errors over different horizons, but

across all frequency ranges (see their Table 3).

To properly isolate the independent contributions of beliefs, we would again like to

construct a noise representation that is observationally equivalent to representation

(12). The following proposition presents one such noise representation.

Proposition 7. The representation of fundamentals and beliefs in system (12) is

8While these authors refer to signal noise as “animal spirits,” they also use the term “pure noise”

to refer to statistical measurement error. We are only concerned with noise in the first sense.
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observationally equivalent to the noise representation

xt = −ρ
σ2
η

σ2
µ

[
mt −

(
1 + δ2

δ

)
mt−1 +mt−2

]
mt = (ρ+ δ)mt−1 − ρδmt−2 + εmt

st = mt + vt

vt = δvt−1 + εvt − βεvt−1[
εmt

εvt

]
iid∼ N

(
0,

[
δσ4

µ/(ρσ
2
η) 0

0 δσ2
ξ/β

])
,

with the convention that s0,t ≡ xt, and where

δ =
1

2ρ

1 + ρ2 +
σ2
µ

σ2
η

−

[(
1 + ρ2 +

σ2
µ

σ2
η

)2

− 4ρ2

]1/2


β =
1

2ρ

1 + ρ2 +
σ2
µ(σ2

η + σ2
ξ )

σ2
ησ

2
ξ

−

(1 + ρ2 +
σ2
µ(σ2

η + σ2
ξ )

σ2
ησ

2
ξ

)2

− 4ρ2

1/2
 .

Using the noise representation in this proposition, we can re-compute the variance

decomposition of the endogenous processes in terms of fundamental shocks and noise

shocks. The fourth column of Table (2) shows the share of variation attributable to

fundamental productivity shocks, and the fifth column shows the share attributable

to productivity noise shocks. Again, the rows do not sum to 100% due to the presence

of government spending and monetary policy shocks. Conceptually, the contribution

of these shocks should also be included under the heading of fundamental shocks, but

for comparison with the first three columns, we only include fundamental productivity

shocks in the fourth column.

As in the model of Schmitt-Grohé and Uribe (2012), nearly all of the variation in

output, consumption, investment, and hours is due to fundamentals. The contribu-

tion of noise shocks is larger than the contribution of noise* shocks, for all variables.

However, the bulk of the contribution of news* shocks turns out to be due to funda-

mentals rather than noise.

To further highlight the difference between noise and noise* shocks, we plot in

Figure (1) both the noise and noise* shares of consumption for different values of the

standard deviation of noise shocks, σξ. The striking result is that the noise share
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Variable Surprise* News* Noise* Fundamental Noise

Output 53 37 0 89 1

Consumption 61 34 1 89 9

Investment 40 43 1 80 4

Hours 62 14 0 75 3

Table 2: Variance decomposition (%) in the model of Barsky and Sims (2012) over

business cycle frequencies of 6 to 32 quarters. All variables are in levels, and esti-

mated parameters are set to their point-estimated values. The rows do not sum to

100% because of other non-technology fundamental processes. Asterisks refer to the

authors’ terminology.

of consumption is monotonically decreasing in σξ. This means that removing noise*

shocks altogether, by taking σξ → 0, actually leads to a larger noise share.

The intuition for this result is that the noise share of agents’ forecasts (and their

actions) is a hump-shaped function of the relative size of noise shocks. When noise

shocks are very small, agents’ signal is very precise, and noise shocks do not affect their

forecasts very much. At the other extreme, when noise shocks are very large, agents’

signal is very imprecise, so they rationally ignore it. The maximum contribution of

noise shocks occurs is achieved for an intermediate size of these shocks.

In this model, noise is generated explicitly by the noise* shocks {ξt}, but also

implicitly by the two shocks {ηt} and {εµt }. The left panel of Figure (1) indicates

that at the estimated parameter values, the combined level of noise is large enough

that agents have already begun to pay less attention to the signal. By eliminating

noise* shocks, the signal becomes more informative and agents to rely on it more.

This allows the remaining noise coming from {ηt} and {εµt } to affect their forecasts

to a greater extent.

4.3 Blanchard, L’Huillier, and Lorenzoni (2013)

The third model we consider comes from Blanchard et al. (2013), and was constructed

“to separate fluctuations due to changes in fundamentals (news) from those due to

temporary errors in agents’ estimates (noise).”9 The main quantitative result of

9This quotation is taken from the article’s abstract (not printed with the article), which can be

found on the AEA’s website: https://www.aeaweb.org/articles?id=10.1257/aer.103.7.3045.
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Figure 1: Noise versus noise*. This figure plots the noise and noise* shares of con-

sumption over business cycle frequencies of 6 to 32 quarters, for different values of the

variance of noise* shocks. The vertical dash-dotted line marks the estimated value of

this parameter; the white circles correspond to the consumption noise shares reported

in Tables (2) and (3). (The asterisk denotes the authors’ original terminology.)

their paper is that noise shocks explain a sizable fraction of short-run consumption

fluctuations. However, it turns out that what the authors call “noise” shocks do not

fully isolate fluctuations due to temporary errors in agents’ estimates. So we can

investigate what this model implies about the importance of pure beliefs.

The model is a standard New Keynesian DSGE model with real and nominal

frictions: one-period internal habit formation in consumption, investment adjust-

ment costs, variable capital capacity utilization, and monopolistic price and wage

setting with time-dependent price rigidities. Fundamentals comprise six different in-

dependent processes, which capture exogenous variation in non-stationary neutral

productivity, stationary investment-specific productivity, government spending, wage

markups, final good price markups, and monetary policy. For more details, see Online

Appendix (B.3).

Agents only receive advance information about productivity, and not about the

other five fundamentals. So it is only pure beliefs about productivity that can play an

independent role in driving fluctuations. Let xt denote the level of productivity, which

is observed by agents in the economy, and let st denote the additional informative

signal that agents receive. Then the processes {st} and {xt} are assumed to evolve
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according to a system of the form

xt = µt + ηt

st = µt + ξt

∆µt = ρ∆µt−1 + εµt

ηt = ρηt−1 + εηt

 εµt

εηt

ξt

 iid∼ N

0,

 σ2
µ 0 0

0 σ2
η 0

0 0 σ2
ξ


 , (13)

with the parameter restriction that ρσ2
µ = (1− ρ)2σ2

η.
10

The authors refer to εµt as a permanent productivity shock, εηt as a transitory

productivity shock, and ξt as a noise shock. Taken together, they refer to εµt and εηt

as news shocks, because they are both correlated with future productivity. Again,

because these definitions are not consistent with the ones in our paper, we will use

asterisks to indicate the authors’ terminology in contrast to ours.

The model is estimated using likelihood-based methods on a sample of quarterly

U.S. data from 1954:Q3 to 2011:Q1. The time series used for estimation are real GDP,

real consumption, real investment, employment, the federal funds rate, inflation as

measured by the implicit GDP deflator, and wages.

A variance decomposition reveals that noise* shocks are important, especially for

consumption. The first column of Table (3) shows the share of business-cycle variation

in the level of output, consumption, investment, and hours that is attributable to

news* shocks, {εµt } and {εηt }, and the second column shows the share attributable

to noise* shocks {ξt}. Due to the presence of the other five fundamental shocks, the

rows do not sum to 100%; the residual represents the combined contribution of these

additional fundamental shocks. These results are consistent with the authors’ original

findings, which are stated in terms of the variance decompositions of forecast errors

over different horizons (see their Table 6).

However, to properly isolate the independent contribution of beliefs, we can derive

a noise representation that is observationally equivalent to representation (13). The

following proposition presents one such noise representation.

Proposition 8. The representation of fundamentals and beliefs in system (13) is

10This restriction ensures that productivity is a random walk.
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observationally equivalent to the noise representation

xt = − ρ

(1− ρ)2
mt+1 +

(1 + ρ2)

(1− ρ)2
mt −

ρ

(1− ρ)2
mt−1

st = mt + vt

mt = (1 + 2ρ)mt−1 − ρ(2 + ρ)mt−2 + ρ2mt−3 + εmt

vt = 2ρvt−1 − ρ2vt−2 + εvt − (δ + δ̄)εvt−1 + δδ̄εvt−2[
εmt

εvt

]
iid∼ N

(
0,

[
(1− ρ)2σ2

µ 0

0 ρ2σ2
ξ/(δδ̄)

])
,

with the convention that s0,t = xt, and where11

δ =
1

2ρ

1 + ρ2 + ρ1/2σµ
σξ
i−

[(
1 + ρ2 + ρ1/2σµ

σξ
i

)2

− 4ρ2

]1/2
 .

Using the noise representation in this proposition, we can re-compute the variance

decomposition of the endogenous processes in terms of fundamental shocks and noise

shocks. The fourth column of Table (3) shows the share of variation attributable to

fundamental productivity shocks and the fifth column shows the share attributable to

productivity noise shocks. Again, the rows do not sum to 100% due to the presence

of fundamental processes other than productivity.

Variable News∗ Noise∗ Fundamental Noise

Output 34 22 26 29

Consumption 40 44 27 57

Investment 6 3 4 5

Hours 17 29 7 39

Table 3: Variance decomposition (%) in the model of Blanchard et al. (2013) over

business cycle frequencies of 6 to 32 quarters. All variables are in levels, and estimated

parameters are set to their posterior median values. The rows do not sum to 100%

because of other non-technology fundamental processes.

In contrast to both the Schmitt-Grohé and Uribe (2012) and Barsky and Sims

(2012) models, we find that a sizable fraction of the variation in output, consump-

tion, and hours worked can be attributed to noise shocks. For example, nearly 60%

11In the definition of δ, i ≡
√
−1 is the imaginary unit, and δ̄ denotes the complex conjugate of

δ. Both δ + δ̄ and δδ̄ are real numbers.
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of the variation in consumption is due to noise shocks. This is more than 10% larger

than the share Blanchard et al. (2013) originally attributed to independent fluctua-

tions in beliefs. A result of similar magnitude is true for output and hours worked.

It is interesting that for all variables in the table, noise about productivity is in

fact more important than productivity itself. This cannot be seen from the original

decomposition.

Moreover, the right panel of Figure (1) indicates that, as in the model of Barsky

and Sims (2012), the noise share of consumption is maximized when the size of noise*

shocks is zero. This emphasizes the fact that variance decompositions in terms of

noise* shocks can be a misleading measure of the importance of pure beliefs.

4.4 Future Fundamentals

Across all three of the models we consider, fundamental shocks appear to play a

relatively large role. This is especially true in the models of Schmitt-Grohé and Uribe

(2012) and Barsky and Sims (2012). Are fundamentals important because agents are

correctly anticipating future fundamental changes before they occur, or because they

are merely reacting to past fundamental changes? To answer this question, we can

use the decomposition in equation (10) to compare the importance of current and

past fundamental shocks relative to future fundamental shocks.

As we described in Section (3.4), it is only possible to consider decompositions

in terms of past, present, and future fundamental shocks if the endogenous process

under consideration is stationary. Each of the three models in this section exhibits

trend growth in output, consumption, and investment. One option would be to first

de-trend these processes using a frequency-domain filter (e.g. band-pass filter) and

then perform the past versus future decomposition. However, this would not be a

good idea, because frequency filters of this type scramble up the dependence across

time periods. As a result, they can introduce spurious dynamic relationships that are

not part of the underlying economic model.

Therefore, we propose to use a flexible exponential de-trending procedure that

preserves the distinction between past and future shocks. For a difference-stationary

process {yt}, we define the stochastic trend ȳt(θ) to be an exponential moving average

of past values,

ȳt(θ) = (1− θ)yt−1 + θȳt−1(θ),
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where θ ∈ [0, 1). We then define the de-trended process {ỹt(θ)} as ỹt(θ) ≡ yt − ȳt(θ).
The parameter θ controls the extent to which the trend depends on past values.

When θ = 0, ỹt(θ) = ∆yt, so the de-trended process is the first-differenced version of

the original process. As θ → 1, ỹt(θ) → yt. By varying θ, we can therefore consider

a range of different hypotheses regarding the stochastic trend. Because the filter is

one-sided for any θ (unlike most frequency-domain filters), it preserves the notions of

past, present, and future defined by the original process {yt}.12
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Figure 2: Fraction of the fundamental share due to future fundamental shocks, as a

function of the de-trending parameter θ ∈ [0, 1). θ = 0 corresponds to a decomposition

in (log) first differences, and θ → 1 corresponds to a decomposition in (log) levels.

Figure (2) plots the fraction of the fundamental share due to future fundamental

shocks, for each of the three models considered in this section. We plot this fraction

12In this respect, our proposal is similar to the procedure recently suggested by Hamilton (2017).
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for a range of different de-trended versions of the endogenous variables, corresponding

to a different values of θ. As in the previous decompositions in this section, we focus

only on fundamentals about which agents receive some advance information. That

means that for the models of Barsky and Sims (2012) and Blanchard et al. (2013),

we focus only on productivity, while in the model of Schmitt-Grohé and Uribe (2012)

we include all seven fundamentals.13

The consistent result across all three models is that the bulk of the contribution

of fundamentals comes from current and past — not future — fundamental shocks.

In some cases, it is difficult to see that there are actually three lines in each subplot.

This is because one of the lines is visually indistinguishable from zero. In the model of

Barsky and Sims (2012), endogenous variables are the least sensitive to future shocks

(on average across θ), followed by the model of Schmitt-Grohé and Uribe (2012) and

then Blanchard et al. (2013).

This result may seem surprising considering that news* shocks are fairly important

in all three models. How can it be that news* shocks are so important, but future

fundamental shocks are not? As discussed in Section (3.4), two conditions must be

satisfied for future fundamental shocks to be an important driver of current actions.

First, agents’ actions must depend to a sufficient degree on their expectations of

future fundamentals. Second, agents must receive signals that provide substantial

information about future fundamentals, above and beyond what they can infer from

current and past fundamentals.

While the different models deliver the same conclusion regarding the importance

of future fundamentals, they do so for very different reasons. The model of Schmitt-

Grohé and Uribe (2012) is not very forward-looking, so the first condition is not met.

This can be seen in the forecast error variance decompositions from Figure (3), which

report the share of news shocks in explaining the variance of forecast errors in various

endogenous variables as a function of the forecast horizon. Most of the contribution of

news shocks occurs only after the 4-quarter-ahead and 8-quarter-ahead news shocks

actually materialize. This is the reason the news shares look like step functions with

jumps just after 4 and 8 quarters.14

The models of Barsky and Sims (2012) and Blanchard et al. (2013) are more

13Agents only receive advance information about productivity in the first two models, so including

other non-productivity fundamentals would only reduce the future fundamental share.
14This same observation is made by Sims (2016).
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forward-looking, but as we will discuss in more detail in Section (4.5) below, agents’

signals do not provide substantial information about future fundamentals above and

beyond what they can already infer from observing current and past productivity.

That is, the second condition is not met. In the Barsky and Sims (2012) model,

agents can already forecast future productivity very well based on current and past

productivity realizations alone, and have relatively little need for the signal. In the

Blanchard et al. (2013) model, agents rely on their signal much more, but that signal

is quite noisy. Indeed, the fact that the signal is noisy is important for helping that

model generate a large role for noise shocks.
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Figure 3: Forecast error variance decomposition in the model of Schmitt-Grohé and

Uribe (2012). The line represents the share of news shocks in explaining the forecast

error variance at each horizon. The decomposition is performed in growth rates

(θ = 0) and in terms of unconditional variances.
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4.5 Understanding the Differences

How is it that the three models we consider in this section, especially the rather similar

models of Barsky and Sims (2012) and Blanchard et al. (2013), deliver such different

results regarding the importance of noise shocks? The existing literature has offered

two separate explanations, one that emphasizes differences in information structures

and another that emphasizes differences in physical economic environments. Beaudry

and Portier (2014) argue that the key difference is that agents in the model of Blan-

chard et al. (2013) face a more difficult inference problem, which leads them to make

larger and more persistent forecast errors. By contrast, Barsky and Sims (2012) argue

that the key difference is that Blanchard et al. (2013) estimate a very accommodative

monetary policy rule and a high degree of price rigidity, which work together to allow

expectational shocks to propagate to the real side of the economy.

In this section we perform several exercises to better understand the reasons why

these models disagree about the importance of noise shocks. We focus exclusively

on the models of Barsky and Sims (2012) and Blanchard et al. (2013), since those

are the most similar. We will argue that, at least with respect to these models, both

the “right” information structure and the “right” physical environment are needed.

Neither one alone is sufficient to generate an large role for noise shocks.

First, we present in Figure (4) some prima facie evidence that the disagreement

is not just due to differences in information structure. If we replace the information

structure in the Barsky and Sims (2012) model with the information structure from

Blanchard et al. (2013), keeping all parameters at their original estimated values,

the noise share of consumption does not change by much. This suggests that having

the right information structure alone is not enough. However, having the right in-

formation structure is still important. If we replace the information structure in the

Blanchard et al. (2013) model with the information structure from Barsky and Sims

(2012), the noise share of consumption falls dramatically.

What is it about the information structure of Blanchard et al. (2013) that makes it

amenable to a high consumption noise share? With this information structure, agents

have to rely a good deal on their noisy signal in order to forecast future productivity.

With the Barsky and Sims (2012) information structure, on the other hand, agents

can forecast future productivity fairly well from the past history of productivity alone.

As a result, they rely less on the noisy signal.
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Figure 4: Swapping information structures. This figure plots the noise share of con-

sumption over business cycle frequencies of 6 to 32 quarters, for each of four different

combinations of model and information structure. All parameters are fixed at the

authors’ original estimated values.

The left panel of Figure (5) shows the standard deviation of productivity forecast

errors in both models, with and without signals; larger forecast error standard devi-

ations mean that agents are making larger mistakes. Agents with Blanchard et al.

(2013) information have a harder time forecasting productivity, even with their signal.

But the additional benefit from receiving the signal is larger for these agents com-

pared to those with Barsky and Sims (2012) information. For those agents, forecasts

with and without the signal are basically the same. The result of these differences

can be seen in the right panel of Figure (5): long-horizon productivity forecasts are

affected by noise to a much greater extent under Blanchard et al. (2013) information.

Of course, a large noise share in long-horizon productivity forecasts only translates

into a large noise share in consumption if agents’ consumption decisions depend on

long-horizon forecasts to a sufficient degree. In New Keynesian models, one way to

achieve this is to have very rigid prices and a relatively unresponsive monetary policy

rule. When prices cannot adjust and nominal rates remain unchanged, real rates

don’t move much in response to changes in beliefs about the future (whether justified

or not). Instead, permanent-income logic implies that consumption must respond. In

fact, as Blanchard et al. (2013) show, in a limiting case of their model with perfectly

rigid prices and a policy rule that does not respond to output, ct = limj→∞Et[at+j]
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Figure 5: Comparing information structures. Left: standard deviation of j-quarter

ahead productivity forecast errors, at+j − Et[at+j], with and without noisy signals.

Right: fraction of j-quarter ahead productivity forecasts, Et[at+j], attributable to

noise shocks over business cycle frequencies of 6 to 32 quarters.

up to a first order approximation. In this limiting case, current consumption only

depends on agents’ infinite-horizon forecast.

This is the line of reasoning emphasized by Barsky and Sims (2012). And as they

suggest, it is true that for “extreme” parameter values it would be possible to achieve

a higher consumption noise share. But that does not provide much by way of an

explanation for why the estimates disagree. It may be possible for both models to

achieve a higher noise share, but apparently only one estimated model actually does.

Since the difference between possible and actual parameter configurations ultimately

depends on the data, we consider that next.

To understand why one set of estimates delivers a high noise share while the

other does not, we perform an estimation exercise. We first level the playing field

by removing incidental differences between the two original estimation exercises (e.g.

differences in the number of shocks, sample period, estimation procedure, and data

series), and then re-estimate both models using maximum likelihood.15 To build

confidence that our changes are incidental, we first verify that we replicate the dis-

agreement between the two models. The top entry in the first column of Table (4)

reports that in our version of the Barsky and Sims (2012) model, the noise share of

15The details are described in Online Appendix (C).
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consumption is 17%, and the bottom entry of the second column reports that in our

version of the Blanchard et al. (2013) model, the noise share of consumption is 51%.

This is close to what we found under the authors’ original estimates.

BS model BLL model BLL flex wage

BS info 17 35 16

(3626) (2041) (2308)

BLL info 13 51 18

(3654) (2035) (2273)

Table 4: Estimation results. This table reports the noise share of consumption over

business cycle frequencies of 6 to 32 quarters, estimated under different combinations

of model and information structure. The numbers in parentheses are the BIC values

associated with each of the estimated models.

Next, we swap information structures and re-estimate both models. The resulting

consumption noise shares are reported in the bottom entry of the first column and

the top entry of the second column in Table (4). These results re-confirm the prima

facie evidence we presented in Figure (4), that having the right information structure

is important but not sufficient to generate a high noise share. In fact, the physical

environment appears somewhat more important after estimation, since our version of

the Blanchard et al. (2013) model still delivers a noise share of 35% when estimated

with the Barsky and Sims (2012) information structure.

Of the remaining differences in the physical environments, it turns out that the

most important from the perspective of the importance of noise is whether nominal

wages are perfectly flexible or not. To show this, we estimate our version of Blanchard

et al. (2013) model after removing the nominal wage rigidities; the results are in the

third column of Table (4). When wages are flexible, the Blanchard et al. (2013) model

delivers results that are much more in line with the Barsky and Sims (2012) model.

Under either information structure, the noise share of consumption is less than 20%.

The reason noise shocks are so much more important when wages are sticky is

that nominal wage rigidities help the model to generate positive business cycle co-

movement in response to noise shocks. Figure (6) plots the impulse responses of

output, consumption, investment, and hours in our estimated version of the Blanchard

et al. (2013) model in response to a one standard deviation noise shock (baseline).
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Figure 6: Impulse responses to a one standard-deviation noise shock. Here, the “flex

wage” model is our the baseline estimated model when the wage rigidity parameter

is taken to its flexible wage limit. All other parameters are the same in both models,

and are equal to our baseline estimates (cf. Online Appendix (C)).

In addition, we also plot the responses of this model in the limit as wage rigidities

vanish, keeping all other parameters at their estimated values (flex wage).16 Only in

the baseline case with sticky wages do all four aggregates increase together in response

to a noise shock.

The noise shock makes agents (mistakenly) expect higher future productivity.

This has two conflicting effects on hours worked. On the one hand, households feel

wealthier and want to consume more and work less. On the other hand, the expected

marginal products of capital and labor are higher, which makes firms want more of

16Alternatively, we could have plotted the responses in the estimated flexible wage version of the

model used to generate the third column of Table (4); the same patterns hold.
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both. When wages are flexible, the first effect dominates; households increase their

wages enough that in equilibrium hours begin to fall. Since labor and capital are com-

plementary, and there are investment adjustment costs, equilibrium investment falls

on impact. When wages are sticky, however, the second effect dominates; households

expect to be working more and therefore increase investment on impact. In either

case, as time passes agents begin to learn that the shock was noise, and eventually

reverse their actions and return back to the original steady state.

Lastly, we also report in Table (4) the Bayesian information criterion (BIC) values

associated with each estimated model. Smaller values indicate better fit, adjusted for

the number of free parameters. According to this criterion, we find that our version of

the Blanchard et al. (2013) model fits better than our version of the Barsky and Sims

(2012) model, regardless of the information structure or the nature of wage setting.

The best fitting model is also the one in which noise shocks play the largest role.

5 Conclusion

Models with news and noise are intimately related. In fact, as we have argued here,

there is a precise sense in which they are identical. The missing link is the observation

that they are really just two different ways of describing the joint dynamics of exoge-

nous economic fundamentals and agents’ beliefs about them. This link is formalized

by Theorem (1).

The observational equivalence of news and noise representations also raises im-

portant questions regarding the applicability of semi-structural empirical methods,

such as structural vector autoregression (VAR) analysis, to models of belief-driven

fluctuations. Some have argued that, while it may be possible to use these meth-

ods to analyze models with news shocks, it is never possible to use them to analyze

models with noise shocks.17 The reason is that news shocks can be expressed as a

function of current and past observables (at least with a rich enough dataset), but

noise shocks cannot. Noise representations are not “invertible.” If an econometrician

could recover noise shocks from current and past observables, so could the agents in

the model. But then, the agents would rationally ignore the noise shocks and they

would never affect any of the agents’ actions.

17This is the main methodological argument of Blanchard et al. (2013).
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How can news and noise representations be observationally equivalent if it is only

possible to use semi-structural methods to analyze models with news shocks and not

models with noise shocks? The answer, as it turns out, is that “invertibility” is not a

necessary condition for using these methods. What matters is not whether shocks can

be recovered from the current and past history of observables, but simply whether

shocks can be recovered from the observables. This weaker condition, which we refer

to as “recoverability,” is satisfied in any noise representation if and only if it is satisfied

in its observationally equivalent news representation. We discuss these issues in more

detail in Chahrour and Jurado (2017).
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Schmitt-Grohé, Stephanie and Mart́ın Uribe (2012) “What’s News in Business Cy-

cles,” Econometrica, 80(6):2733–2764.

Sims, Eric (2016) “What’s news in News? A cautionary note on using a variance

decomposition to assess the quantitative importance of news shocks,” Journal of

Economic Dynamics and Control , 73(1):41–60.

Walker, Todd B. and Eric M. Leeper (2011) “Information flows and news driven

business cycles,” Review of Economic Dynamics , 14(1):55–71 Special issue: Sources

of Business Cycles.

42



Appendix

Proof of Proposition (1). Let x̂t ≡ Et[xt+1] denote agents’ expectations of the

fundamental at date t+ 1 given their information at t. The observable processes are

{xt} and {x̂t}. Expectations at horizons greater than one are spanned by these two

processes.

The two representations are observationally equivalent if and only if the spectral

density of the observable data is the same. In this case, the data consists of the

process {dt} with dt ≡ (xt, x̂t)
′ for all t ∈ Z. Equating the spectral density implied

by each representation,

fd(λ) =
1

2π

[
σ2
a,0 + σ2

a,1 σ2
a,1e

−iλ

σ2
a,1e

iλ σ2
a,1

]
︸ ︷︷ ︸

news

=
1

2π

 σ2
x

(
σ4
x

σ2
x+σ2

v

)
e−iλ(

σ4
x

σ2
x+σ2

v

)
eiλ

(
σ4
x

σ2
x+σ2

v

) 
︸ ︷︷ ︸

noise

.

This equality holds if and only if the relations in Proposition (1) are satisfied.

Proof of Theorem (1). To prove the first part, note that because Ht−1(x̂) ⊂ Ht(x̂)

for all t ∈ Z, it is possible to decompose Ht(x̂) into an orthogonal family of subspaces

Ht(x̂) =
∞⊕
i=0

Dt−i(x̂),

where Dt(x̂) ≡ Ht(x̂) 	 Ht−1(x̂) (cf. Rozanov, 1967, ch. 2). This means that xt ∈
Ht(x̂) has a unique representation of the form

xt =
∞∑
i=0

wi,t−i, (14)

where the random variable wi,t−i represents the projection of xt onto Dt−i(x̂) for any

i ∈ Z+. By the orthogonality of the sequence of subspaces {Dt(x̂)}, the process {wi,t}
is uncorrelated over time for each i ∈ Z+.

While equation (14) looks almost like a news representation, it does not satisfy

Definition (1) because it may be that wi,t 6⊥ wj,t for some i 6= j. Therefore, we use a

version of the Gram-Schmidt orthogonalization procedure (cf. Luenberger, 1969, ch.

3) to transform these into an orthogonal sequence of shocks. Specifically, we define:

εa0,t = w0,t εai,t = wi,t −
i−1∑
j=0

φi,jε
a
j,t for i > 0,
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where φi,j ≡ 〈wi,t, εaj,t〉/‖εaj,t‖2 is the projection coefficient. Define the index set Ia to

be the set of indices i ∈ Z+ such that ‖εai,t‖ > 0. The collection of orthogonal shocks

εai,t with i ∈ Ia is uniquely determined because the collection of input shocks wi,t with

i ∈ Z+ is unique. Substituting the orthogonalized shocks into equation (14), xt can

be uniquely rewritten as:

xt =
∞∑
i=0

∑
j≤i

φi,jε
a
j,t−i =

∑
j∈Ia

∞∑
i=j

φi,jε
a
j,t−i =

∑
j∈Ia

aj,t−j.

The second equality rearranges the indexes on the double summation, and the third

equality introduces the definition aj,t−j ≡
∑∞

i=j φi,jε
a
j,t−i. The fact that the orthogo-

nalized shocks are also uncorrelated over time implies that aj,t ⊥ ak,τ for all j 6= k

and t, τ ∈ Z. Therefore, this defines the unique news representation when agents’

date-t information set is Ht(a).

What remains is to prove that the expectations implied by this news representation

are in fact equal to {x̂i,t} for any i ∈ Z. Under rational expectations, the i-step ahead

expectation of xt at date t under the original noise representation is equal to the

orthogonal projection of xt+i onto Ht(x̂): x̂i,t = E[xt+i|Ht(x̂)]. By the uniqueness of

orthogonal projections,

wi,t = x̂i,t − x̂i+1,t−1,

where wi,t was defined in equation (14). Therefore, Ht(w) = Ht(x̂). But then because

Ht(a) = Ht(w) by construction, it follows that Ht(a) = Ht(x̂). So expectations are

indeed the same under both representations, x̂i,t = E[xt+i|Ht(x̂)] = E[xt+i|Ht(a)],

which completes the proof of the first part of the theorem.

To prove the second part, we start from the (unique) news representation and

define

si,t ≡ ai,t for all i ∈ Ia.

BecauseH(x) ⊂ H(a), there exist unique elements mi,t ∈ H(x) and vi,t ∈ H(s)	H(x)

such that si,t = mi,t + vi,t. This defines a noise representation when agents’ date-t

information set is Ht(s). What remains is to prove that the expectations implied

by this noise representation are the same as the ones implied by the original news

representation. Because Ht(s) = Ht(a) by construction, and Ht(a) = Ht(x̂) by

the definition of a news representation, it follows that Ht(s) = Ht(x̂) and therefore

expectations are the same, x̂i,t = E[xt+i|Ht(x̂)] = E[xt+i|Ht(s)]. This completes the

proof of the second part of the theorem.
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Appendix for Online Publication

A Proofs

Proof of Proposition (2). By rational expectations, Ht(x) ⊆ Ht(x̂), and the fact

that {x̂i,t} forms a Gaussian system, it follows that agents’ date−t information is

fully summarized by the random variables x̂i,τ across all i and τ ≤ t.

We can let Ft(x̂) denote the smallest σ-algebra generated by these variables. That

is, Ft(x̂) is generated by cylinder sets of the form

At ≡ {ω ∈ Ω : x̂i1,t1 ∈ G1, . . . , x̂in,tn ∈ Gn},

where Ω denotes the space of elementary events, G1, . . . ,Gn are arbitrary Borel sets

in R, the indices t1, . . . , tn assume values in the set {τ ∈ Z : τ ≤ t}, and the indices

i1, . . . , in assume values in Z. By construction, the sequence of σ-algebras {Ft(x̂)} is

uniquely determined by the forecasts {x̂i,t}. If two representations of fundamentals

and beliefs imply the same dynamics for {x̂i,t}, they imply the same information

structure {Ft(x̂)}. Therefore, the conditional distribution function of any stochastic

process {ct}, such that ct is measurable with respect to Ft(x̂) for each t ∈ Z, is also

the same.

Proof of Proposition (3). As in the proof of Proposition (1), we can equate the

spectral density of {dt} with dt ≡ (xt, x̂t)
′ under each representation. In this case,

fd(λ) =
1

2π

 σ2
η + σ2

µ

(
σ4
µ

σ2
µ+σ2

ξ

)
e−iλ(

σ4
µ

σ2
µ+σ2

ξ

)
eiλ

σ4
µ

σ2
µ+σ2

ξ


︸ ︷︷ ︸

system (6)

=
1

2π

 σ2
x

(
σ4
x

σ2
x+σ2

v

)
e−iλ(

σ4
x

σ2
x+σ2

v

)
eiλ σ4

x

σ2
x+σ2

v


︸ ︷︷ ︸

noise

.

This equality holds if and only if the relations in Proposition (3) are satisfied.

Proof of Proposition (4). Consider an arbitrary noise representation of fundamen-

tals and beliefs and an arbitrary endogenous process {ct}. Using the structure of sig-

nals in a noise representation, H(s) = H(m)⊕H(v). Because vi,t ∈ H(s)	H(x) for

all i ∈ Is, the uniqueness of orthogonal decompositions implies that H(m) = H(x).

Therefore, H(s) = H(x)⊕H(v). Furthermore, the definition of noise shocks implies

that H(εv) = H(v), so

H(s) = H(x)⊕H(εv). (15)
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By the endogeneity of {ct} and the rationality of expectations, ct ∈ H(s) for all t ∈ Z.

Combining this with Equation (15), it follows that for each ct, there exist two unique

elements at ∈ H(x) and bt ∈ H(εv) such that

ct = at + bt. (16)

To consider variance decompositions at different frequencies, let fy(λ) denote the

spectral density function of a stochastic process {yt}. Then because at ⊥ bt for all

t ∈ Z, it follows that

fc(λ) = fa(λ) + fb(λ),

where the functions fa(λ) and fb(λ) are uniquely determined by the processes {at}
and {bt}. These functions in turn uniquely determine the share of the variance of

{ct} due to noise shocks in any frequency range λ < λ < λ, which is equal to∫ λ
λ
fb(λ)dλ∫ λ

λ
fc(λ)dλ

.

The share due to fundamentals is equal to one minus this expression.

Proof of Proposition (5). Beginning with the decomposition of H(s) in equation

(15), we can further decompose H(x) uniquely into the sum of subspaces Dt(x) ≡
Ht(x)	Ht−1(x),

H(s) =

(
∞⊕

j=−∞

Dt−j(x)

)
⊕H(εv).

By definition, each fundamental shock εxt ≡ xt − E[xt|Ht−1(x)] forms a basis in the

space Dt(x). Since ct ∈ H(s) for all t ∈ Z, it follows that for each ct, there exists a

unique sequence of projection coefficients {αj} such that

ct =
∞∑

j=−∞

αjε
x
t−j + bt,

where αj ≡ E[ctε
x
t−j]/var[εxt ] and bt ⊥ H(x). The shares of the variance of {ct} due

to past, present, and future fundamental shocks are therefore uniquely determined,

and are given by∑∞
j=1 α

2
jvar[εxt ]

var[ct]︸ ︷︷ ︸
past

,
α2

0var[εxt ]

var[ct]︸ ︷︷ ︸
present

, and

∑−1
j=−∞ α

2
jvar[εxt ]

var[ct]︸ ︷︷ ︸
future

.
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Proof of Corollary (1). Consider an arbitrary noise representation of fundamentals

and beliefs, and an endogenous process {ct}. By the rationality of expectations,

agents’ best forecast of ct+h as of date t is equal to

ĉh,t = E[ct+h|Ht(s)] = E[ct+h|Ht(x̂)].

Therefore, ĉh,t ∈ Ht(x̂). This means that the forecast error wht ≡ ct − ĉh,t−h also

satisfies wh,t ∈ Ht(x̂). Therefore, {wht } is an endogenous process. By Proposition

(4), the variance decomposition of this process in terms of noise and fundamentals is

uniquely determined over any frequency range. Moreover, this result is true for any

forecast horizon h ∈ Z because h was chosen arbitrarily.

Lemma 1. Any news representation in which each process {ai,t} is i.i.d. over time

is observationally equivalent to a noise representation with xt
iid∼ N (0, σ2

x) and

si,t = xt+i + vi,t, vi,t
iid∼ N (0, σ2

v,i),

where vi,t ⊥ xτ and vi,t ⊥ vj,τ for any i 6= j ∈ Is and t, τ ∈ Z, if and only if

σ2
x =

∑
i∈Is

σ2
a,i and σ2

v,i =
1

σ2
a,i

(∑
j<i

σ2
a,j

)(∑
j≤i

σ2
a,j

)
for all i ∈ Is.

Proof of Lemma (1). The proof of this result is a straightforward generalization of

the proof of Proposition (1). In a news representation with i.i.d. news processes, the

joint spectral density of any two forecast processes {x̂j,t} and {x̂k,t} for j, k ∈ Z+ is

equal to

fj,k(λ) =
1

2π

∑
m∈M

σ2
a,me

−iλ(k−j), (17)

whereM is defined as the set of indices m ∈ Ia such that m ≥ |k− j|+ j. In a noise

representation of the type described in the proposition, the joint spectral density of

any two forecast processes {x̂j,t} and {x̂k,t} for j, k ∈ Z+ is equal to

f0,0(λ) =
1

2π
σ2
x (18)

fj,k(λ) =
1

2π
σ2
x

[
1 +

1/σ2
x∑

m∈M 1/σ2
v,m

]−1

e−iλ(k−j) for j, k > 0.

Equating the densities in (17) with those in (18), and recursively solving for the

parameters of the noise representation delivers the relations stated in the lemma.
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Proof of Proposition (6). Define the composite shock

εxt ≡ εa0,t + εa4,t−4 + εa8,t−8. (19)

The process {εxt } is i.i.d. because {εai,t} is i.i.d. for each i ∈ Ia ≡ {0, 4, 8}. agents’

date-t information set in representation (11) is Ht(ε
a). But based on this information

set, equation (19) defines a news representation for {εxt } with i.i.d. news processes.

Therefore, we can apply Lemma (1) to the composite shock process, which gives the

relations stated in the proposition.

Proof of Proposition (7). According to representation (12), the two signals ob-

served by agents in the economy are s0,t ≡ xt and s1,t ≡ µt+ξt. BecauseH(x) ⊂ H(s),

there exist two unique elements mt ∈ H(x) and vt ⊥ H(x) such that:

s1,t = mt + vt for all t ∈ Z. (20)

The spectral density of {xt} is non-zero for almost all λ ∈ [−π, π], which means that

{mt} can be obtained from {xt} by a linear transformation of the form

mt =

∫ π

−π
eiλtϕ(λ)Φx(dλ), (21)

where Φx is the random spectral measure of {xt}, and ϕ(λ) = fs,x(λ)/fx(λ) is the

spectral characteristic of the transformation (cf. Rozanov, 1967, ch. 2). Using the

restrictions in the system (12), we have

ϕ(λ) =
σ2
µe
iλ

σ2
µ + σ2

η|1− ρe−iλ|2
=

δσ2
µe
iλ

ρσ2
η|1− δe−iλ|2

,

where |δ| < 1 is equal to the expression stated in the proposition. Combining ϕ(λ)

with the spectral density of {xt}, we can use equation (21) to obtain the spectral

density of {mt},

fm(λ) =
1

2π

δσ4
µ

ρσ2
η

∣∣∣∣ 1

(1− ρe−iλ)(1− δe−iλ)

∣∣∣∣2 .
This corresponds to the law of motion presented in the proposition. From equation

(21), it follows that the fundamental process {xt} can be obtained from {mt} by a

linear transformation with spectral characteristic ϕ(λ)−1. Finally, the definition of

the noise process {vt} in equation (20) implies that

fv(λ) =
1

2π

σ2
µσ

2
η

σ2
µ + σ2

η|1− ρe−iλ|2
+ σ2

ξ =
1

2π
σ2
ξ

δ

β

∣∣∣∣1− βe−iλ1− δe−iλ

∣∣∣∣2 ,
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where |β| < 1 is equal to the expression stated in the proposition. Because Ht(s) is

unchanged from representation (12) for all t ∈ Z, it follows that x̂j,t ≡ E[xt+j|Ht(s)] is

also unchanged for any j ∈ Z. Therefore these two representations are observationally

equivalent.

Proof of Proposition (8). A complication in this case is that both fundamentals

and the signal of future fundamentals are difference-stationary, rather than stationary

processes. As a result, they do not have finite second moments, which is a prerequisite

for working in L2. We handle this complication by defining a new processes {x̃t(θ)}
as the solution to the difference equation

x̃t(θ) = θx̃t−1(θ) + ∆xt, for all t ∈ Z, (22)

where ∆ is the first-difference operator; ∆xt ≡ xt−xt−1. This new process is station-

ary for each value of θ ∈ [0, 1), and admits the spectral representation

x̃t(θ) =

∫ π

π

eiλt(1− θe−iλ)−1Φ∆x(dλ),

where Φ∆x is the random spectral measure of {∆xt}. We define a new signal process

{s̃t(θ)} analogously, derive the noise representation in terms of {x̃t(θ)} and {s̃t(θ)}
for an arbitrary value of θ, and then take limits as θ approaches one from below.

The two signals observed by agents in the economy are s̃0,t ≡ x̃t(θ) and s̃1,t ≡
s̃t(θ). Because H(x̃) ⊂ H(s̃), there exist two unique elements m̃t(θ) ∈ H(x̃) and

ṽt(θ) ⊥ H(x̃) such that:

s̃t(θ) = m̃t(θ) + ṽt(θ) for all t ∈ Z. (23)

The spectral density of {x̃t(θ)} is non-zero for almost all λ ∈ [−π, π], which means

that {m̃t(θ)} can be obtained from {x̃t(θ)} by a linear transformation of the form in

equation (21), where in this case the spectral characteristic ϕ(λ) is

ϕ(λ) = ρ
σ2
µ

σ2
η

1

|1− ρe−iλ|2
.

Combining this with the spectral density of {x̃t(θ)}, it follows that the spectral density

of {m̃t(θ)} is

fm̃(λ; θ) =
1

2π
ρ
σ4
µ

σ2
η

∣∣∣∣ 1

(1− θe−iλ)(1− ρe−iλ)2

∣∣∣∣2 .
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By writing out the corresponding law of motion for {m̃t(θ)} and then taking limits

as θ approaches one from below, we obtain the law of motion for {mt} stated in the

proposition. In a similar manner, we can obtain the law of motion for {xt} in terms of

{mt} by using the spectral characteristic ϕ(λ)−1. Finally, the definition of the noise

process {ṽt(θ)} in equation (23) implies that

fv(λ; θ) =
1

2π

ρ2σ2
v

|δ|2

∣∣∣∣(1− e−iλ)(1− δe−iλ)(1− δ̄e−iλ)(1− θe−iλ)(1− ρe−iλ)2

∣∣∣∣2 ,
where |δ| < 1 is equal to the expression stated in the proposition. By letting θ tend

to one from below, we obtain the law of motion for {vt}. Because Ht(s̃) is unchanged

from representation (13) for each θ ∈ [0, 1) and all t ∈ Z, it follows that

x̂j,t ≡ lim
θ→1−

Et[x̃t+j(θ)|Ht(s̃)]

is also unchanged for any j ∈ Z. Therefore these two representations are observation-

ally equivalent.

B Quantitative Models

The following subsections provide a sketch of each of the three quantitative models

considered in this paper. For more details, we refer the reader to the original articles

and their supplementary material.

B.1 Model of Schmitt-Grohé and Uribe (2012)

A representative household chooses consumption {Ct}, labor supply {ht}, investment

{It}, and the utilization rate of existing capital {ut} to maximizes its lifetime utility,

E

[
∞∑
t=0

βtζt
(Ct − bCt−1 − ψhθtSt)1−σ

1− σ

]
,

subject to a standard sequence of constraints,

St = (Ct − bCt−1)γS1−γ
t−1

Ct + AtIt +Gt =
Wt

µt
ht + rtutKt + Pt

Kt+1 = (1− δ(ut))Kt + zIt It

[
1− Φ

(
It
It−1

)]
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Relative to the standard real business cycle model, this model features investment

adjustment costs Φ(It/It−1); variable capacity utilization, which increases the return

on capital rtut at the cost of increasing its rate of depreciation through δ(ut); one

period internal habit formation in consumption, controlled by 0 < b < 1; a potentially

low wealth effect on labor supply, when 0 < γ < 1 approaches its lower limit; and

monopolistic labor unions, which effectively reduce the wage rate by an amount µt

each period but rebate profits lump sum to the household through Pt.

Output is produced by a representative firm, which combines capital Kt, labor ht,

and a fixed factor of production L using a (potentially) decreasing returns to scale

production function:

Yt = zt(utKt)
αk(Xtht)

αh(XtL)1−αk−αh .

Market clearing requires that the goods and labor markets clear so that the aggre-

gate resource constraint is satisfied: Ct + AtIt + Gt = Yt. The seven fundamental

processes capture exogenous variation in permanent and transitory neutral produc-

tivity {Xt, zt}, permanent and transitory investment-specific productivity {At, zIt },
government spending {Gt}, wage markups {µt}, and preferences {ζt}.

B.2 Model of Barsky and Sims (2012)

A representative household chooses consumption {Ct}, labor supply {Nt}, and real

holdings of riskless one-period bonds {Bt} to maximize its lifetime utility,

E

[
∞∑
t=0

βt

(
ln(Ct − κCt−1)− N

1+1/η
t

1 + 1/η

)]
subject to a standard flow budget constraint,

Ct +Bt = wtNt − Tt + (1 + rt−1)Bt−1 + Πt,

where rt is the net nominally risk-free interest rate, wt is the wage, Tt denotes lump-

sum taxes, and Πt is aggregate profits.

Final goods producers are competitive and take the price of intermediate goods,

Pt(j), as given and each have a production function of the form:

Yt =

[∫ 1

0

Yt(j)
ξ−1
ξ

] ξ
ξ−1

7



Intermediate goods firms are monopolistically competitive and take the demands

of final goods firms as given. They each have a production function of the form

Yt(j) = AtKt(j)
αNt(j)

1−α. Each intermediate firm chooses a price for its own good,

subject to the constraint that it will only be able to re-optimize its price each period

with constant probability 1− θ.
A continuum of capital producers produce new capital (to sell to intermediate

firms) according to the production function

Y k
t (ν) = φ

(
It(ν)

Kt(ν)

)
Kt(ν),

where φ is an increasing and concave function. The aggregate capital stock evolves

according to Kt = φ(It/Kt)Kt−1 + (1 − δ)Kt−1, where 0 < δ < 1 is the depreciation

rate. The aggregate resource constraint is Yt = Ct+It+Gt (ignoring resources lost due

to inefficient price dispersion). The monetary authority sets the one-period nominally

risk-free rate of return according to a feedback rule of the (log-linear approximate)

form:

it = ρiit−1 + (1− ρi)φπ(πt − π∗) + (1− ρi)φy(∆Yt −∆Y ∗) + εi,t.

The three fundamental processes capture exogenous variation in permanent neutral

productivity {At}, government spending {Gt}, and monetary policy {εi,t}

B.3 Model of Blanchard, L’Huillier, and Lorenzoni (2013)

Each household j ∈ (0, 1) chooses consumption {Cj,t}, investment {Ij,t}, nominally

risk-free bond holdings {Bj,t}, and the rate of capital utilization {Uj,t} to maximize

its lifetime utility

E

[
∞∑
t=0

βt

(
ln(Cj,t − hCj,t−1)−

N1+ζ
j,t

1 + ζ

)]
subject to a standard flow budget constraint. Each household is the monopoly supplier

of labor type j, and chooses wages {Wj,t} subject to the constraint that it can only re-

optimize its wage each period with constant probability 1− θw. Risk-sharing among

households results in a common budget constraint, which is the same as if each

household were to receive its pro rata share of the economy’s total wage bill:

PtCt + PtIt + Tt + PtC(Ut)K̄t−1 +Bt = Rt−1Bt−1 + Υt +

∫ 1

0

Wj,tNj,tdj +Rk
tUtK̄t−1,

K̄t = (1− δ)K̄t−1 +Dt[1− G(It/It−1)]It.

8



Pt is the price level, Tt is a lump sum tax, Rt is the gross nominally risk-free rate, Υt

is aggregate profits, Rk
t is the capital rental rate, 0 < δ < 1 is the rate of depreciation,

G(It/It−1) represents investment adjustment costs, C(Ut) represents the marginal cost

of increasing capacity utilization.

Final goods producers are competitive and take the price of intermediate goods

as given, Pjt, and each have a production function of the form

Yt =

[∫ 1

0

Y
1

1+µpt

jt dj

]1+µpt

.

Intermediate goods firms are monopolistically competitive, each with a production

function of the form Yjt = (Kjt)
α(AtLjt)

1−α. Each intermediate firm chooses a price

for its own good, subject to a 1− θp probability of re-optimization each period.

Labor services are supplied to intermediate goods producers by competitive labor

agencies that take wages as given, Wjt, and have a production function of the form

Nt =

[∫ 1

0

N
1

1+µwt
jt dj

]1+µwt

.

Market clearing in the final goods market requires that Ct+It+C(Ut)K̄t−1 +Gt = Yt,

and in the labor market that
∫ 1

0
Ljtdj = Nt. Monetary policy follows the rule:

rt = ρrrt−1 + (1− ρr)(γππt + γyŷt) + qt.

The six fundamental processes capture exogenous variation in permanent neutral

productivity {At}, transitory investment-specific productivity {Dt}, price markups

{µpt}, wage markups {µwt}, government spending {Gt}, and monetary policy {qt}.

C Estimation Details

We estimate each model using quarterly data on log growth rates of real per-capita

output, consumption, and hours, along with the log-levels of inflation and the nominal

interest rate. The data span 1960:Q1 to 2017:Q2, with observations from 1954:Q3 to

1959:Q4 used to initialize the Kalman filter. Real variables are deflated by the im-

plicit GDP price deflator, and put in per-capita terms using civilian non-institutional

population age 16 and above. Consumption includes expenditure on non-durable

goods and services. Inflation is measured by the log-change in the GDP deflator

9



while the nominal interest rate is given by the effective federal funds rate. Data were

downloaded from the St. Louis Federal Reserve Database, FRED, on October 25,

2017. Original downloaded data and data transformations can be seen in the online

code accompanying this appendix.

For each model, we allow for shocks to the same four exogenous processes: pro-

ductivity, noise, monetary policy, and government spending. The productivity and

information blocks are described in Sections (4.2) and (4.3) of the main text. We

allow both the government spending process and the exogenous component of mone-

tary policy to follow first-order autoregressive laws of motion. We follow Barsky and

Sims (2012) in fixing the parameters for the government spending process, ρg = 0.95

and σg = 0.25. (The original estimates of Blanchard et al. (2013) for these parameters

are quite similar.) We estimate the parameters of the monetary policy process.

Since our approach targets five measured variables with only four fundamental

shocks, we allow for small independent and identically distributed measurement error

shocks in the observation of each series. In our estimation, we bound the variance of

measurement error for each variable at 2.5% of that variable’s unconditional variance

in the data. Since this bound is attained in all six of our estimations, we do not

report those parameters here. Our results are not sensitive to changing this bound.

For each combination of economic environment and information structure, we re-

estimate the model using the method of maximum likelihood. Specifically, we search

for the set of parameters that maximizes the log-likelihood function of the data using

a robust global optimization routine that combines a genetic algorithm to discover

many good initial parameter combinations with a hill-climbing routine that ensures

our final answer is (at least) a local optimum. All of our results are robust to changing

the random seed that underlies the initial points.

The following tables summarize our parameter estimates for each of the estimated

models. In these tables, an asterisk indicates that the estimated parameter lies at, or

very close, to the boundary of the parameter space, which we define before maximizing

the likelihood function.
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Economic parameters BS info BLL info

κ habit 0.3145 0.0252

η Frisch elasticity 4.9976* 4.9999*

γ capital adj. cost 5.2093 3.4670

θ Calvo price 0.9420 0.9309

φπ Taylor inflation 4.8073 4.8897

φy Taylor output growth 0.0042 0.0484

ρi interest smoothing 0.5072 0.4074

σi s.d. policy shock 0.1343 0.1629

ρεi autocorr. policy 0.9989* 0.9892

BS info parameters

ρ autocorr. growth 0.9231

σµ s.d. growth shock 0.2190

ση s.d. surprise* shock 0.8716

σξ s.d. noise* shock 0.0001*

BLL info parameters

ρ autocorr. growth 0.8581

σµ s.d. growth shock 1.3638

σξ s.d. noise* shock 0.0010

Table 5: Estimated parameters for alternative versions of the Barsky and Sims (2012)

model.
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Economic parameters BS info BLL info
BS info +

flex wage

BLL info +

flex wage

h habit 0.8145 0.7066 0.6209 0.4726

ζ inverse Frisch elasticity 0.2000* 0.2000* 0.2000* 0.2000*

ξ cap. util. cost 0.5023 0.0079 0.4628 0.0010*

χ inv. adj. cost 15.0000* 15.0000* 15.0000* 15.0000*

θp Calvo price 0.8771 0.8645 0.8654 0.8929*

θw Calvo wage 0.9013 0.8708 - -

γπ Taylor inflation 4.2259 3.8640 1.0100* 1.0100*

γy Taylor output gap 0.0010* 0.0010* 0.4742 0.4135

ρr interest smoothing 0.4686 0.4540 0.2813 0.1127

σq s.d. policy shock 0.3394 0.2792 0.3089 0.4112

ρq autocorr. policy 0.9990* 0.9990* 0.9425 0.9481

BS info parameters

ρ autocorr. growth 0.9166 0.8980

σµ s.d. growth shock 0.2553 0.4430

ση s.d. surprise* shock 0.9762 1.2358

σξ s.d. noise* shock 0.0001* 0.0001*

BLL info parameters

ρ autocorr. growth 0.8911 0.8068

σµ s.d. growth shock 1.3025 1.8876

σξ s.d. noise* shock 0.0001* 0.0001*

Table 6: Estimated parameters for alternative versions of the Blanchard et al. (2013)

model.
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